Skip Nav Destination
Close Modal
Search Results for
Burgers orientation relationship
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 82
Search Results for Burgers orientation relationship
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
..., and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Image
in Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 23 Illustrations of all special crystallographic orientation relationships among grain-boundary α (red) and two adjacent β grains (blue and green) that are able to hold the Burgers orientation relationship with the grain-boundary α. (a) Type 1: 10.52°/⟨110⟩ β . (b) Type II: 49.48°/49.48
More
Image
in Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 11 Schematic lattice correspondences between the body-centered cubic (bcc) β phase and the hexagonal close-packed α phase during β → α transformation when maintaining (a) Pitsch-Schrader and (b) Burgers orientation relationships
More
Image
in Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 6 Schematic lattice correspondence between the body-centered cubic (bcc) β phase and the hexagonal close-packed (hcp) α phase during β → α transformation maintaining Burgers orientation relationship in both (a) to (c) three dimension and (e) to (f) two dimension. Source: Ref 15
More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
.... Because the Burgers vectors of these defects are inclined to one another, it is not possible for both of them to be in the screw orientation simultaneously, and so, a weak interaction between at least one of the partials and both interstitial and substitutional solutes in fcc will occur. Summary...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... tracing ( Fig. 5b ). Under low-absorption conditions, the aforementioned orientation contrast formation mechanism also applies to ordinary dislocations with Burgers vectors smaller than that of micropipes ( Ref 18 ). Fig. 5 (a) Synchrotron transmission topograph of superscrew dislocations in 6H-SiC...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003742
EISBN: 978-1-62708-177-1
... will provide additional short-range three-dimensional mobility of dislocations for deformation temperatures above one-half of the melting temperature, T m . Deformation mode and grain orientation determine slip system activity and hence the Burgers vector population of dislocations. The slip pattern...
Abstract
Microstructure and crystallographic texture are the key material features used in the continuous endeavor to relate the processing of a metal with its final properties. This article emphasizes several aspects of deformation microstructures, namely, microstructural evolution, dislocation boundaries, and macroscopic properties. It discusses three different microstructural types: cell blocks, TL blocks, and equiaxed subgrains. The article also emphasizes the behavior of metals and single-phase alloys processed under plastic deformation (dislocation slip) conditions. It provides information on the microstructural parameters, measurement techniques, and microstructural relationships, which assist in predicting the mechanical properties and recrystallization behavior of materials. The article concludes with an analysis of the general relationship between the microstructural parameters and properties.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005412
EISBN: 978-1-62708-196-2
... Abstract This article summarizes a physical model of an interface structure and shows how the model helps in optimizing atomistic modeling studies. It presents the orientation relationship of the interface structure to define the mutual crystallographic position of adjacent crystals...
Abstract
This article summarizes a physical model of an interface structure and shows how the model helps in optimizing atomistic modeling studies. It presents the orientation relationship of the interface structure to define the mutual crystallographic position of adjacent crystals. The article describes the model-informed atomistic modeling of the interface structures for interpolating the results of atomistic modeling to predict the properties of interfaces. Theories to predict low-energy orientation relationships are described. The article discusses the use of the localization parameter, such as shear modulus, bonding energy, and transformations, for prediction of interface structures. It provides information on the application of the atomistic modeling of interface structure to predict interface reaction mechanisms.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... , where G is the shear modulus, and b 2 is the magnitude of the Burgers vector). Thus, the total of possible slip directions (or systems) depends on the number of slip planes and slip directions in each plane. The orientations of slip planes and the direction of slip are described by using Miller...
Abstract
Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions. It discusses the factors on which the structures developed during plastic deformation depend. These factors include crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. The article illustrates the microstructural features that appear after substantial deformation when revealed through metallographic investigation.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004029
EISBN: 978-1-62708-185-6
... as an approximation and a point of reference. Fig. 5 (002) pole figure of all variants of the bcc α phase formed from an (001)[100] oriented face-centered cubic (fcc) γ crystal following the Bain and Kurdjumov-Sachs (K-S) relationships The K-S relations correspond to “rotations” of +90° about each...
Abstract
The processing of steel involves five distinct sets of texture development mechanisms, namely, austenite deformation, austenite recrystallization, gamma-to-alpha transformation, ferrite deformation, and static recrystallization during annealing after cold rolling. This article provides an introduction on crystallographic textures. It discusses the effects of austenite rolling and recrystallization on the texture and transformation behavior of recrystallized austenite and deformed austenite. The article illustrates the overall summary of the rolling and transformation behavior. It details cold-rolling textures, annealing textures, and recrystallization textures of steel samples. The article concludes with a summary of texture development during cold rolling and annealing.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005418
EISBN: 978-1-62708-196-2
... parameters such as the twin thickness, orientation relationship, and so on. Source: Ref 47 Two-Phase Aggregates Many materials are composed of dual-phase composites, such as duplex steels and α + β titanium alloys. Therefore, it is desirable to be able to model such situations within codes...
Abstract
Self-consistent models are a particular class of models in continuum micromechanics, that is, the field concerned with making predictions of the properties and evolution of aggregates whose single-crystal deformation behavior is known. This article provides information on the measurement and representation of textures as well as prediction of texture evolution in single-phase materials and two-phase aggregates.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005507
EISBN: 978-1-62708-197-9
... are needed to mathematically define a two-dimensional grain boundary: the orientation relationship as expressed by a rotation angle, ω; an angle, θ, that defines the spatial orientation of the grain boundary with respect to one of the grains; and the components t 1 , t 2 of the translation vector t...
Abstract
Grain boundaries are interfaces between crystallites of the same phase but different crystallographic orientation. They can be characterized as being low angle or high angle. This article discusses the measurements of grain-boundary energy with a brief summary of different schemes for measuring grain-boundary surface tension. The atomistic simulations of grain-boundary energy, measurement of grain-boundary migration and the techniques used to monitor grain-boundary migration are reviewed. Several considerations and effects influencing the computation of grain-boundary mobility are also discussed.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
.... Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric...
Abstract
This article describes the general aspects of creep, stress relaxation, and yielding for homogeneous polymers. It then presents creep failure mechanisms in polymers. The article discusses extrapolative methods for the prediction of long-term creep failure in polymer materials. Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric method, one of the most common to describe the material deformation and rupture time, is also discussed.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007034
EISBN: 978-1-62708-387-4
... , known as the Burgers orientation relationship (BOR) ( Ref 6 ). This alignment results in parallelism of some slip systems in both constituents, as discussed at length in the literature ( Ref 7 ), which allows dislocations to pass through both the α and β phases with relative ease, although...
Abstract
This article presents a detailed discussion on the microstructures, physical metallurgy, classification, deformation behavior, and fracture modes of titanium alloys. It illustrates the effect of microstructure and texture on the fracture topography and fracture behavior of titanium alloys with a variety of relevant examples.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
... , being performed on the crystal: (Eq 4) d W = τ a b l d x where b is the Burgers vector, and ldx is the area on the slip plane being swept out by the mobile dislocation segment. For small plastic strains, the relationship between the glide resistance, τ , and the shear...
Abstract
This article, to develop an understanding of the underlying mechanisms governing deformation at elevated temperatures, discusses the phenomenological effects resulting from temperature-induced thermodynamic and kinetic changes. It describes the deformation behavior of engineering materials using expressions known as constitutive equations that relate the dependence of stress, temperature, and microstructure on deformation. The article reviews the characteristics of creep deformation and mechanisms of creep, such as power-law creep, low temperature creep, power-law breakdown, diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003254
EISBN: 978-1-62708-176-4
...) in an engineering stress-versus-engineering strain curve. Figure 7 introduces the influence of crystallographic orientation on the deformation of single crystals. Although this relationship becomes more complex in polycrystalline metals, the deformation will still depend on the orientation of the load...
Abstract
Mechanical properties are described as the relationship between forces (or stresses) acting on a material and the resistance of the material to deformation (i.e., strains) and fracture. This article briefly introduces the typical relationships between metallurgical features and the mechanical behavior of metals. It explains the deformation and fracture mechanisms of these metals. Typical properties measured during mechanical testing related to these deformation mechanisms and the microstructures of metals are discussed. The article reviews the various factors that affect the deformation response of the metal: strain rate, temperature, nature of loading, stress-corrosion cracking, and presence of notches.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005413
EISBN: 978-1-62708-196-2
... of the material. It is given by the relationship: (Eq 1) τ μ ∝ b l where τ is the resolved shear stress, l is the average obstacle distance, μ is the shear modulus, and b is the length of Burgers vector. The proportionality constant depends on the geometrical arrangement and the profile...
Abstract
This article focuses on the analyzing and modeling of stress-strain behavior of polycrystals of pure face-centered cubic (fcc) metals in the range of temperatures and strain rates where diffusion is not important. It presents a phenomenological description of stress-strain behavior and provides information on the physical background, alternative interpretations, and directions of research. The quantitative description of strain hardening of fcc polycrystals is provided. The article also discusses the modeling of stress-strain behavior in body-centered cubic metals, hexagonal metals, stage IV work hardening, and the various classes of single-phase alloys.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
.... Fig. 1 Close-packed planes/directions and crystallography of (a) hexagonal close-packed alpha titanium and (b) body-centered cubic beta titanium. The close-packed layer of atoms lying between the upper and lower close-packed layers has been removed from (a) for clarity. (c) Burgers orientation...
Abstract
The modeling and simulation of texture evolution for titanium alloys is often tightly coupled to microstructure evolution. This article focuses on a number of problems for titanium alloys in which such coupling is critical in the development of quantitative models. It discusses the phase equilibria, crystallography, and deformation behavior of titanium and titanium alloys. The article describes the modeling and simulation of recrystallization and grain growth of single-phase beta and single-phase alpha titanium. The deformation- and transformation-texture evolution of two-phase (alpha/beta) titanium alloys are also discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001766
EISBN: 978-1-62708-178-8
... diffracted from a given family of atomic planes. Certain crystallographic details of the sample, such as crystal orientation and matrix-precipitate orientation relationships, may also be obtained. The newest generation of microscopes can generate electron-diffraction patterns from small volumes (<50 nm...
Abstract
Analytical transmission electron microscopy (ATEM) is unique among materials characterization techniques as it enables essentially the simultaneous examination of microstructural features through high-resolution imaging and the acquisition of chemical and crystallographic information from small regions of the specimen. This article illustrates the effectiveness of the technique in solving materials problems. The first section of the article provides information on analytical electron microscope (AEM) and its basic operational characteristics as well as on electron optics, electron beam/specimen interactions and the generation of a signal, signal detectors, electron diffraction, imaging, x-ray microanalysis, electron energy loss spectroscopy, and sample preparation. The second section consists of 12 examples, each illustrating a specific type of materials problem that can be solved, at least in part, with AEM.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005428
EISBN: 978-1-62708-196-2
... crystallographic orientations, which are associated with each lattice site, s i ∈ {0, Q }, where i labels the lattice site. The system defines a boundary between unlike orientations and no interface between like orientations. In the most basic Potts model, the Q orientations can be represented...
Abstract
The misorientation of a boundary of a growing grain is defined not only by its crystallography but also by the crystallography of the grain into which it is growing. This article focuses on the Monte Carlo Potts model that is typically used to model grain growth, Zener-Smith pinning, abnormal grain growth, and recrystallization. It introduces the basics of the model, providing details of the dynamics, simulation variables, boundary energy, boundary mobility, pinning systems, and stored energy. The article explains how to incorporate experimental parameters and how to validate the model by comparing the observed behavior quantitatively with theory. The industrial applications of the model are also discussed. The article also provides a wide selection of the algorithms for implementing the Potts model, such as boundary-site models, n -fold way models, and parallel models, which are needed to simulate large-scale industrial applications.
1