Skip Nav Destination
Close Modal
Search Results for
Brinell hardness numbers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 238 Search Results for
Brinell hardness numbers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005184
EISBN: 978-1-62708-186-3
... numbers for Brinell hardness numbers and Vickers (diamond pyramid) hardness numbers for steel. Brinell hardness cement carbides nonaustenitic steels Rockwell B hardness Rockwell C hardness steel Vickers hardness white cast iron FROM A PRACTICAL STANDPOINT, it is important to be able...
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article tabulates examples of the published hardness conversion equations for various materials including steels, cement carbides, and white cast irons. It informs that when making hardness correlations, it is best to consult ASTM E 140. The article tabulates the approximate Rockwell B hardness and Rockwell C hardness conversion numbers for nonaustenitic steels according to ASTM E 140. It also tabulates the approximate equivalent hardness numbers for Brinell hardness numbers and Vickers (diamond pyramid) hardness numbers for steel.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004043
EISBN: 978-1-62708-185-6
... hardness conversion numbers for nonaustenitic steels. The article lists the approximate equivalent hardness numbers for Brinell hardness numbers and Vickers hardness numbers for steel in tables. The tables are also outlined in a graphical form. Brinell hardness hardness number nonaustenitic steels...
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article summarizes hardness conversion formulas for various materials in a table. It tabulates the approximate Rockwell B and Rockwell C hardness conversion numbers for nonaustenitic steels. The article lists the approximate equivalent hardness numbers for Brinell hardness numbers and Vickers hardness numbers for steel in tables. The tables are also outlined in a graphical form.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003271
EISBN: 978-1-62708-176-4
.... The Vickers hardness test follows the same principle of the Brinell test—that is, an indenter of definite shape is pressed into the material to be tested, the load removed, the diagonals of the resulting indentation measured, and the hardness number calculated by dividing the load by the surface area...
Abstract
This article describes the principal methods for macroindentation hardness testing by the Brinell, Vickers, and Rockwell methods. For each method, the test types and indenters, scale limitations, testing machines, calibration, indenter selection and geometry, load selection and impression size, testing methodology, and testing of specific materials are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0006001
EISBN: 978-1-62708-168-9
... numbers for nonaustenitic steels, and approximate equivalent hardness numbers for Brinell and Vickers (diamond pyramid) hardness numbers for steels are provided. Brinell hardness hardness hardness number Rockwell hardness steel Vickers hardness FROM A PRACTICAL STANDPOINT, it is important...
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article is a comprehensive collection of tables that list hardness conversion formulas. Approximate Rockwell B and C hardness conversion numbers for nonaustenitic steels, and approximate equivalent hardness numbers for Brinell and Vickers (diamond pyramid) hardness numbers for steels are provided.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003278
EISBN: 978-1-62708-176-4
... and approximate equivalent hardness numbers for the Brinell hardness and the Vickers (diamond pyramid) hardness numbers for steel. hardness conversions steel Rockwell hardness nonaustenitic steels Brinell hardness Vickers hardness FROM A PRACTICAL STANDPOINT, it is important to be able to convert...
Abstract
Hardness conversions are empirical relationships defined by conversion tables limited to specific categories of materials. This article is a collection of tables that present approximate Rockwell B hardness conversion numbers for nonaustenitic steels as per ASTM E 140 and approximate equivalent hardness numbers for the Brinell hardness and the Vickers (diamond pyramid) hardness numbers for steel.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003270
EISBN: 978-1-62708-176-4
...). In the Brinell, Vickers, and Knoop tests, hardness value is the load supported by unit area of the indentation, expressed in kilograms per square millimeter (kgf/mm 2 ). In the Rockwell tests, the depth of indentation at a prescribed load is determined and converted to a hardness number (without measurement...
Abstract
Hardness testing is perhaps the simplest and the least expensive method of mechanically characterizing a material. This article provides an overview of the principles of hardness testing. It compares Brinell with Meyer hardness testing and hardness testing of fully cold worked metals with fully annealed metals. The article discusses the plastic deformation of ideal plastic metals under an indenter, by a flat punch, and by spherical indenters. The classification of the hardness tests using various criteria, including type of measurement, magnitude of indentation load, and nature of the test, is also provided.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003276
EISBN: 978-1-62708-176-4
...). Low-and high-powered microscopes (Brinell, Vickers, and microindentation) also help measure the resulting indentation diagonals from which a hardness number is calculated using a formula. In the Rockwell test, the depth of indentation is measured and converted to a hardness number, which is inversely...
Abstract
This article reviews the factors that have a significant effect on the selection and interpretation of results of different hardness tests, namely, Brinell, Rockwell, Vickers, and Knoop tests. The factors concerned include hardness level (and scale limitations), specimen thickness, size and shape of the workpiece, specimen surface flatness and surface condition, and indent location. The article focuses on the selection for specific types of materials, such as steels, cast irons, nonferrous alloys, and plastics, and industrial applications, of hardness tests.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... shown that the indentations produced under the same test conditions are macroscopically nearly identical, and measurements of their dimensions yield fairly repeatable hardness numbers for a given material. This observation by James A. Brinell in the case of a spherical indenter led to the introduction...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004044
EISBN: 978-1-62708-185-6
... Approximate equivalent hardness numbers for wrought aluminum products Table 1 Approximate equivalent hardness numbers for wrought aluminum products Brinell hardness No., 500 kgf, 10 mm ball, HBS Vickers hardness No., 15 kgf, HV Rock well hardness No. Rockwell superficial hardness No. B scale...
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005185
EISBN: 978-1-62708-186-3
... hardness numbers for wrought aluminum products Table 1 Approximate equivalent hardness numbers for wrought aluminum products Brinell hardness No., 500 kgf, 10 mm ball, HBS Vickers hardness No., 15 kgf, HV Rock well hardness No. Rockwell superficial hardness No. B scale, 100 kgf, 1 16...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003275
EISBN: 978-1-62708-176-4
... Scleroscope hardness Rockwell C hardness number, HRC Vickers hardness number, HV Brinell hardness number, HB 10 mm standard ball, 3000 kgf load 10 mm carbide ball, 3000 kgf load 97.3 68 940 … … 95.0 67 900 … … 92.7 66 865 … … 90.6 65 832 … 739 88.5 64 800 … 722...
Abstract
Miscellaneous hardness tests encompass a number of test methods that have been developed for specific applications. These include dynamic, or "rebound," hardness tests using a Leeb tester or a Scleroscope; static indentation tests on rubber or plastic products using the durometer or IRHD testers; scratch hardness tests; and ultrasonic microindentation testing. This article reviews the procedures, equipment, and applications associated with these alternate hardness test methods.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009224
EISBN: 978-1-62708-176-4
... by dividing the maximum applied load ( P ) by the area of the indentation measured either over the surface of the indenter (Brinell hardness) or in the plane of the surface indented (Meyer hardness). In both the Brinell and Meyer tests, the indenter is a sphere, Fig. 1(a) , and: (Eq 1) H B...
Abstract
A newly developed theory on plasticity makes it possible to include elastic effects, which play a major role when using blunt hardness indenters. This article reviews the new theory and explains several phenomena associated with practical hardness testing. In the indentation hardness test, a blunt indenter that approximates a flat punch is forced into a plane surface. The effective cone angle for most indenters is such that some upward flow results even when there is sufficient material surrounding the indenter to provide a full elastic constraint. When loaded by a blunt indenter, materials with high values of Young's Modulus of Elasticity/uniaxial flow stress (E/Y) (metals) appear to develop a Hertzian stress distribution over the contact. In contrast, materials with low values of E/Y (glasses and polymers) develop a uniform distribution of stress.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... values below the minimum 58 HRC, resistance to pitting fatigue is reduced, and the possibility of brinelling (denting) of bearing raceways is increased. Because hardness decreases with increasing operating temperature, the conventional materials for ball and roller bearings can be used only...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.9781627081818
EISBN: 978-1-62708-181-8
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... by taking the mean diameter of the indentation (two readings at right angles to each other) and calculating the Brinell hardness number (HB) by dividing the applied load by the surface area of the indentation according to the following formula: HB = L / ( π D / 2 ) [ D − ( D 2...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
...-type damage are false Brinelling , which is applied particularly to bearings where the craters caused by the vibration of the ball against the race are circular and resemble Brinell impressions, and “fitting rust,” where gages or shims are clamped together and experience vibration. The terms...
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006564
EISBN: 978-1-62708-210-5
... temper Properties Typical Minimum Tensile strength, MPa (ksi) 235 (34) 195 (28) Yield strength, 0,2%, MPa (ksi) 130 (19) … Elongation in 50 mm (2 in.), % 2.0 1 max Brinell hardness, 500 kg 90 … Compressive yield strength, 0.2%, MPa (ksi) 130 (19) … Shear strength, MPa...
Abstract
Alloys 333.0 and A333.0 are age-hardenable permanent mold casting alloys recommended for high-temperature applications requiring pressure tightness. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and application characteristics of these 3xxx series alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003191
EISBN: 978-1-62708-199-3
... at very high speeds. aluminum alloys Brinell hardness carbide size cast iron cutting speed free-machining additives graphite hardness testing inclusion machinability microstructures steels tool life Cast Irons THE MACHINABILITY OF IRON relates specifically to its microstructure...
Abstract
An understanding of the influence of microstructure on machinability can provide an insight into more efficient machining and the correct solution to problems. Providing numerous microstructures to depict examples, this article describes the relationship between the microstructure and machinability of cast irons, steels, and aluminum alloys. It presents data on hardness values and the effect of the matrix microstructure of cast iron on tool life. It also explains how a higher inclusion count improves the machinability of steels and why aluminum alloys can be machined at very high speeds.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003272
EISBN: 978-1-62708-176-4
... with an angle of 136° between opposite faces in order to obtain hardness numbers that would be as close as possible to Brinell hardness numbers for the same specimens. This made the Vickers test easy to adopt, and it rapidly gained acceptance. Unlike Rockwell tests, the Vickers test has the great advantage...
Abstract
This article provides a discussion on the equipment used and specimen preparation for microindentation hardness testing (MHT) such as the Vickers hardness test and the Knoop hardness test. It describes the important test considerations to be considered during MHT. The article also discusses the most common hardness conversions and the applications of MHT.