Skip Nav Destination
Close Modal
Search Results for
Al-Si-Cu-Mg eutectic systems
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 201
Search Results for Al-Si-Cu-Mg eutectic systems
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005215
EISBN: 978-1-62708-187-0
...-copper and aluminum-silicon; binary peritectic systems: copper-zinc; multicomponent eutectic systems: Al-Si-Cu-Mg; and for systems with both eutectic and peritectic reactions: Fe-C-Cr and nickel-base superalloy. microsegregation nickel-base superalloy solute redistribution equilibrium...
Abstract
This article discusses the two extremes of solute redistribution, equilibrium solidification and nonequilibrium Gulliver-Scheil solidification, for which solid redistribution of solute within the primary solid phase is the distinguishing parameter. The process and material parameters that control microsegregation are discussed in relation to the manifestations of microsegregation in simple and then increasingly complex alloy systems. The measurement and kinetics of microsegregation are discussed for the binary isomorphous systems: titanium-molybdenum; binary eutectic systems: aluminum-copper and aluminum-silicon; binary peritectic systems: copper-zinc; multicomponent eutectic systems: Al-Si-Cu-Mg; and for systems with both eutectic and peritectic reactions: Fe-C-Cr and nickel-base superalloy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003769
EISBN: 978-1-62708-177-1
... Alloy group Nominal chemical composition (a) , wt% Mg Si Ti Cr Mn Fe Ni Cu Zn Zr Other Wrought alloys 1 xxx (Al > 99.00%) 0.006–0.25 0.006–0.7 0.002–0.06 0.01–0.03 0.002–0.05 0.006–0.6 … 0.006–0.35 0.006–0.05 … … 2 xxx (Cu) 0.02–0.8 0.10–1.3 0.02–0.3 0.05...
Abstract
This article focuses on the metallography and microstructures of wrought and cast aluminum and aluminum alloys. It describes the role of major alloying elements and their effect on phase formation and the morphologies of constituents formed by liquid-solid and/or solid-state transformations. The article also describes specimen preparation procedures and examines the microstructure of several alloy samples.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
.... The commercial heat treatable alloys are, with few exceptions, based on ternary or quaternary systems with respect to the solutes involved in developing strength by precipitation. The most prominent systems are: Al-Cu-Mg, Al-Cu-Si, and Al-Cu-Mg-Si, which are in the 2 xxx and 2 xx.x groups (wrought and casting...
Abstract
The physical and mechanical properties of aluminum alloy can be improved by strengthening mechanisms such as strain hardening used for non-heat treatable aluminum alloy and precipitation hardening used for heat treatable aluminum alloy. This article focuses on the effect of strengthening mechanisms on the physical and mechanical properties of non-heat treatable and heat treatable aluminum alloys. It describes the use of the aluminum alloy phase diagram in determining the melting temperature, solidification path, equilibrium phases, and explains the effect of alloying element in phase formation.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006509
EISBN: 978-1-62708-207-5
... shortness. Aluminum-copper-silicon alloys with more than 3 to 4% Cu are heat treatable, but usually heat treatment is used only with those alloys that also contain magnesium, which enhances their response to heat treatment. The Al-Mg-Si system also is the basis for the heat treatable 6 xxx series...
Abstract
Heat treatment of aluminum alloys frequently refers to the heat treatable aluminum alloys that can be strengthened by solution treatment, quenching, and subsequent hardening. This article introduces the general metallurgy of strengthening aluminum alloys by heat treatment. It discusses various heat treatable alloying elements, such as copper, chromium, iron, magnesium, silicon, zinc, and lithium. The article describes the age-hardening treatments and generalized precipitation sequence for aluminum alloys. It reviews the solution heat treatment in terms of solution heating time and temperature, as well as high-temperature oxidation. The article also discusses quench sensitivity, vacancy loss, grain-boundary precipitates, and quench delay for the heat treatment of aluminum. It concludes with a discussion on the deformation of aluminum alloys prior to aging.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006496
EISBN: 978-1-62708-207-5
... Formation in Al-Si-Cu-Mg Casting Alloys , AFS Trans. , Vol 105 , 1997 , p 809 – 818 24. Rodriguez A. et al. , The Effect of Solidification Conditions and Alloy Composition on the Castability and Mechanical Properties of B206 Alloy , AFS Trans. , Vol 117 , 2009 25. Sigworth...
Abstract
Castability is a complex characteristic that depends on both the intrinsic fluid properties of the molten metal and the manner in which the particular alloy solidifies. This article discusses the practical aspects of solidification important to aluminum foundrymen. The primary focus is on the chemical segregation that occurs during freezing, because it determines the castability of the alloy. The article describes the two types of segregation, namely, microsegregation and macrosegregation. It discusses the effect of freezing range on castability of an alloy. The article lists the freezing range of a number of important alloys. It concludes with a discussion on castability of 2xx, 3xx, 4xx, 5xx, and 7xx alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006264
EISBN: 978-1-62708-169-6
... considered here are: Al-Cu and Al-Cu-Mg (2xx) alloys, Al-Zn-Mg (7xx) alloys, Al-Si-Mg alloys, Al-Si-Cu, and Al-Si-Cu-Mg alloys. aluminum alloys artificial aging castings chemical composition heat treatment natural aging quenching solution heat treatment THE STRENGTH OF ALUMINUM CASTINGS can...
Abstract
This article presents a detailed discussion on typical thermal treatment practices for hardening of various aluminum casting alloys. These practices are solution treatment, quenching or cooling, preaging, and artificial aging at an elevated temperature. The aluminum casting alloys considered here are: Al-Cu and Al-Cu-Mg (2xx) alloys, Al-Zn-Mg (7xx) alloys, Al-Si-Mg alloys, Al-Si-Cu, and Al-Si-Cu-Mg alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
... (in the 2 xxx and 2 xx.x alloy series) Al-Mg-Si systems with strengthening from Mg 2 Si (6 xxx wrought alloys and some alloys in the 4 xxx and 4 xx.x alloy series) Al-Zn-Mg systems, with strengthening from MgZn 2 (alloys in the 7 xxx and 7 xx.x alloy series) Al-Zn-Mg-Cu systems (some alloys...
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006507
EISBN: 978-1-62708-207-5
..., the aluminum-copper alloys were largely replaced by Al-Cu-Si and Al-Si-Mg alloys. In the as-cast structure there is a good deal of segregation, and aluminum grains are surrounded by a low-melting, copper-rich eutectic. This structure gives undesirable properties. So, the first step in heat treatment...
Abstract
The strength of aluminum castings can be improved significantly by heat treatments, which control the size, shape, and distribution of the impurity elements in the casting. This article presents a discussion on the heat treatment of aluminum alloy castings, with a focus on the fundamental technical aspects involved in each process step. The intent is to convey a good understanding of the fundamental aspects of heat treatment. Typical heat treatments of aluminum casting alloys are presented in a table. The article describes the solution heat treatment, quenching, and preaging of Al-Si-Mg alloys, as well as the solution heat treatment and artificial aging of Al-Si-Cu-Mg casting alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003727
EISBN: 978-1-62708-177-1
... , and silicon composition, C Si , on the SDAS can be calculated with ( Ref 19 ): S D A S = 34.9 · C Cu − 0.333 ⋅ C Si − 0.145 ⋅ t f 0.208 S D A S = 77.09 ⋅ C Cu − 0.1989 ⋅ C Si − 0.078 ⋅ T ˙ L − 0.252 For Al-Mg...
Abstract
The most common aluminum alloy systems are aluminum-silicon, aluminum-copper, and aluminum-magnesium. This article focuses on the grain structure, eutectic microstructure, and dendritic microstructure of these systems. It provides information on microsegregation and its problems in casting of alloys. The article also illustrates the casting defects such as macroporosity, microshrinkage, and surface defects, associated with the alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006503
EISBN: 978-1-62708-207-5
... with respect to the solutes involved in developing strength by precipitation. The most prominent systems are: AlCu-Mg, Al-Cu-Si, and Al-Cu-Mg-Si, alloys of which are in the 2 xxx wrought and 2 xx.x casting alloy groups Al-Mg-Si (6 xxx wrought alloys) Al-Si-Mg, Al-Si-Cu, and Al-SiMg-Cu (3 xx.x...
Abstract
This article provides a thorough review of the physical metallurgy of aluminum alloys and its role in determining the properties and from a design and manufacturing perspective. And its role in include the effects of composition, mechanical working, and/or heat treatment on structure and properties. This article focuses on the effects of alloying and the metallurgical factors on phase constituents, structure, and properties of aluminum alloys. Effects from different combinations of alloying elements are described in terms of relevant alloy phase diagrams. The article addresses the underlying alloying and structural aspects that affect the properties and possible processing routes of aluminum alloys. It provides information on the heat treatment effects on the physical properties of aluminum alloys and the microstructural effects on the fatigue and fracture of aluminum alloys. The important alloying elements and impurities are listed alphabetically as a concise review of major effects.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006225
EISBN: 978-1-62708-163-4
... and continuous precipitation in AZ91 (a Mg-Al-Zn alloy) is shown in Fig. 25 . Fig. 24 Scanning electron micrograph of continuous precipitation in 6061 aluminum alloy, where the smaller precipitates are Mg 2 Si, and the larger particles are AlFeSi intermetallics at the grain boundary. Note the precipitate...
Abstract
This article begins with a schematic illustration of a eutectic system in which the two components of the system have the same crystal structure. Eutectic systems form when alloying additions cause a lowering of the liquidus lines from both melting points of the pure elements. The article describes the aluminum-silicon eutectic system and the lead-tin eutectic system. It discusses eutectic morphologies in terms of lamellar and fibrous eutectics, regular and irregular eutectics, and the interpretation of eutectic microstructures. The article examines the solidification of a binary alloy of exactly eutectic composition. It concludes with a discussion on terminal solid solutions.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006388
EISBN: 978-1-62708-192-4
... in Fig. 4 . Fig. 4 Solidification microstructure of a hypoeutectic Al-Si-Cu-Mg alloy with (a) fine and (b) coarse secondary dendrite arm spacing A short distance between the dendrite arms is generally accompanied by finer eutectic structure and intermetallic compounds, as well as smaller...
Abstract
This article begins by describing the designations of cast and wrought aluminum alloys. It explains the effects of main alloying elements in aluminum alloys: boron, chromium, copper, iron, lithium, magnesium, manganese, nickel, phosphorus, silicon, sodium, strontium, titanium, and zinc. The article describes the microstructure of cast and wrought aluminum alloys and the various strengthening mechanisms, including solid solution, grain refinement, strain or work hardening, precipitation (or age) hardening, and dispersoid strengthening. The article explicates the tribological behavior of aluminum alloys, aluminum-base composites, and metal-matrix composites. It presents the effect of material-related parameters and external factors on wear behavior and transitions of aluminum-silicon alloys. The article also presents the most important factors affecting the dry sliding wear behavior of particle-reinforced aluminum-base composites against a steel counterface.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006295
EISBN: 978-1-62708-179-5
... in the following paragraph. Fig. 19 Classification of the influence of a third element in the Fe-C- X system on the graphite- or carbide-promoting tendency in cast iron, based on their influence on the eutectic stable and metastable temperatures. (a) Strong graphite stabilizers Si, Al, Ni, and Cu. (b) Weak...
Abstract
The control of the solidification process of cast iron requires understanding and control of the thermodynamics of the liquid and solid phases and of the kinetics of their solidification, including nucleation and growth. This article addresses issues that allow for the determination of probability of formation and relative stability of various phases. These include the influence of temperature and composition on solubility of various elements in iron-base alloys; calculation of solubility lines, relevant to the construction of phase diagrams; and calculation of activity of various components. It discusses the role of alloying elements in terms of their influence on the activity of carbon, which provides information on the stability of the main carbon-rich phases of iron-carbon alloys, that is, graphite and cementite. The article reviews the carbon solubility in multicomponent systems, along with saturation degree and carbon equivalent.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... of wrought and cast aluminum alloys. The heat treatable aluminum alloys include: Aluminum-copper systems, with strengthening from coherent and transition precipitates prior to the formation of the equilibrium intermetallic CuAl 2 (in the 2 xxx and 2 xx.x alloy series) Al-Cu-Mg systems, in which...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005191
EISBN: 978-1-62708-187-0
... 1273 H H 0 973–1273 H Si 11.5 973 H Si 6.2 1073 H Si 4.2 1173 H Si 1.8 1273 Si H see ε H Si 973–1273 Cd Cd −5.0 1373 Cu Cu 2.2 1373 Ga Ga −0.3 1023 Ge Ge +3.0 1200 In In −4.5 1173 Mg Mg 3.0 1073 Si Si 16.0 1100...
Abstract
This article provides accessible information on the thermodynamic properties of liquid aluminum-base and copper-base alloys with the help of phase diagrams. It contains tables that compile the thermodynamic data in the form of activities, activity coefficients, partial molar thermal properties, and integral molar properties for selected aluminum-based and copper-based alloys.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002407
EISBN: 978-1-62708-193-1
... on fatigue and fracture are available. With respect to alloys, only the Al-Si-Mg system has been studied in depth. The Al-Cu system, being inherently hot short, is welded less frequently and is not as well characterized. The majority of work seems to show that fatigue life is not degraded when welding...
Abstract
This article reviews the fatigue and fracture properties of aluminum alloy castings, specifically alloys A356 and A357/D357 (all-T6) and alloy A201-T7, from the perspective of both design and manufacturing considerations. In addition, it provides an overview of the roles played by microstructure, manufacturing processes, test conditions, and casting design in determining the fatigue and fracture properties of aluminum casting alloys.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005402
EISBN: 978-1-62708-196-2
... of stability into the quaternary compositional space; for such cases, limited additional experimental effort is needed, such as in the Mo-Si-B-Ti system ( Ref 45 ). Developing a Thermodynamic Description of Mg-Al-Sr The efficient method to obtain a description of a ternary, using Mg-Al-Sr as an example...
Abstract
A phase diagram is a graphical representation of the phase equilibria of materials in terms of temperature, composition, and pressure. This article provides an overview on the background of phase diagram calculation software. It presents an algorithm to calculate binary stable phase equilibria. The article summarizes a rapid method to obtain a thermodynamic description of a multicomponent system. It also provides information on thermodynamically calculated phase diagrams.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003731
EISBN: 978-1-62708-177-1
... 2 ); fcc Plates first ∥ {110}; later probably ∥ {120} Al-Mg-Si Al solid solution; fcc Mg 2 Si; fcc Plates ∥ {100} Al-Zn Al solid solution; fcc Nearly pure Zn; hcp Plates ∥ {111}; (0001) ∥ {111}, [11 2 0] ∥ ⟨110⟩ Au-Cu (b) Au-Cu solid solution; fcc α ″ 1 (AuCu I); ord fct (100...
Abstract
Precipitation reactions occur in many different alloy systems when one phase transforms into a mixed-phase system as a result of cooling from high temperatures. This article discusses the homogenous and heterogeneous nucleation and growth of coherent and semicoherent precipitates. It describes two precipitation modes, namely, general or continuous precipitation and cellular or discontinuous precipitation. The article also provides information on the precipitation sequences in aluminum alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005206
EISBN: 978-1-62708-187-0
... of Al 6 Mn and the α phase, and the formation of Mg 2 Si. Finally, after solidification is complete, precipitation of Al 2 CuMg begins. The final microstructure consists mainly of (Al) and small amounts of Al 20 Cu 2 Mn 3 , Al 7 Cu 2 Fe, Mg 2 Si, and Al 2 CuMg. The Scheil solidification, shown in Fig...
Abstract
This article discusses the application of thermodynamic in the form of phase diagrams for visually representing the state of a material and for understanding the solidification of alloys. It presents the derivation of the relationship between the Gibbs energy functions and phase diagrams, which forms the basis for the calculation of phase diagrams (CALPHAD) method. The article also discusses the calculation of phase diagrams and solidification by using the Scheil-Gulliver equation.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001417
EISBN: 978-1-62708-173-3
... as a function of weld composition, is shown in Fig. 3 for various binary aluminum systems (Al-Li, Al-Si, Al-Cu, Al-Mg, and the quasibinary Al-Mg 2 Si) ( Ref 10 , 11 , 12 , 13 , 14 , 15 ). Fig. 3 Relative crack sensitivity versus weld composition for various binary aluminum systems. Source: Ref 10...
Abstract
Aluminum alloys, particularly the heat-treatable alloys, are sensitive to weld cracking. Anticipation of these characteristics and general knowledge of these materials assist in selection of suitable method for welding heat-treatable aluminum alloys. This article provides a general description of the metallurgy, characteristics, and applications of heat-treatable aluminum alloys and a detailed discussion on the characteristics of heat-treatable aluminum alloys, their resulting impact on the weld quality and property, along with the methods of avoiding or reducing the impacts. The impact created in the weld quality includes crack sensitivity, liquation cracking, porosity, and heat-affected zone degradation. The article provides an overview of filler alloy selection for reducing weld crack sensitivity and increasing weld strength, ductility, and corrosion resistance in the welds of heat-treatable aluminum alloys.
1