Skip Nav Destination
Close Modal
Search Results for
ASTM A106 (seamless carbon steel pipe)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7 Search Results for
ASTM A106 (seamless carbon steel pipe)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... found the crack and, instead of rejecting the part, had attempted to repair it by welding, which was not permitted in the specification. In another case, a piece of 50-mm (2-in.) diam schedule 80 (5.5 mm, or 0.218-in., wall thickness) ASTM A106 seamless carbon steel pipe that had been...
Abstract
This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005135
EISBN: 978-1-62708-186-3
...-strong seamless low-carbon steel pipe (33.40 mm, or 1.315 in., OD by 4.55 mm, or 0.179 in., wall). The bends were made at the rate of 300 per hour. Example 4: Bending Oval Tubing with a Formed Mandrel Oval tubing measuring 25×110 mm (1×4 3 8 in.) in outside dimensions and with a wall...
Abstract
This article begins with a discussion on the factors considered in the selection of bending methods. It presents a detailed description of the types of bending method, machines and tools used in the bending and forming of tubing. The article provides an overview of bending tubing with and without a mandrel and hot bending. It concludes with a discussion on the bending of thin-wall tubes and lubrication for tube bending.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... of rejecting the part, had attempted to repair it by welding, which was not permitted in the specification. In another case, a piece of 50 mm (2 in.) diameter schedule 80 (5.5 mm, or 0.218 in., wall thickness) ASTM A106 seamless carbon steel pipe that had been hydrostatically tested was about to be welded...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004211
EISBN: 978-1-62708-184-9
... International standard specifications for refinery steels Table 4 ASTM International standard specifications for refinery steels Material Pipes and tubes Plates Castings Forgings Carbon steel A53, A106, A120, A134, A135, A139, A178, A179, A192, A210, A211, A214, A226, A333, A334, A369, A381...
Abstract
This article presents the primary considerations and mechanisms for corrosion and explains how they are involved in the selection of materials for process equipment in refineries and petrochemical plants. It discusses the material selection criteria for a number of ferrous and nonferrous alloys used in petroleum refining and petrochemical applications. The article reviews the mechanical properties, fabricability, and corrosion resistance of refinery steels. It describes low- and high-temperature corrosion, hydrogen embrittlement, and cracking such as stress-corrosion, sulfide stress, and stress-oriented hydrogen-induced cracking. The article considers hydrogen attack, corrosion fatigue, and liquid metal embrittlement and the methods of combating them. It explains the causes of velocity-accelerated corrosion and erosion-corrosion. The article summarizes some corrective measures that can be implemented to control corrosion. The applicable standards for materials used in corrosive service conditions in upstream and downstream petroleum service are presented in a tabular form.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
... Cracking of Carbon Steel Pipe to a Flange <xref rid="a0006808-ref16" ref-type="bibr">(Ref 16)</xref> Cross-country pipeline is girth welded continuously for long pipe sections. At some intervals, a flange must be welded onto the pipe for coupling to a valve or other device. In one instance, a section...
Abstract
This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures or rejection in new construction inspection are also discussed. The article discusses the types of base metal cracks and metallurgical weld cracking. The article discusses the processes involved in the analysis of in-service weld failures. It briefly reviews the general types of process-related discontinuities of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness-for-service assessment methodologies for calculating allowable or critical flaw sizes are also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... of ASTM A106 carbon steel pipe with wall severely damaged by hydrogen attack. The pipe failed after 15 months of service in hydrogen-rich gas at 34.5 MPa (5000 psig) and 320 °C (610 °F). (a) Overall view of failed pipe section. (b) Microstructure of hydrogen-attacked pipe near the midwall. Hydrogen attack...
Abstract
Hydrogen damage is a term used to designate a number of processes in metals by which the load-carrying capacity of the metal is reduced due to the presence of hydrogen. This article introduces the general forms of hydrogen damage and provides an overview of the different types of hydrogen damage in all the major commercial alloy systems. It covers the broader topic of hydrogen damage, which can be quite complex and technical in nature. The article focuses on failure analysis where hydrogen embrittlement of a steel component is suspected. It provides practical advice for the failure analysis practitioner or for someone who is contemplating procurement of a cost-effective failure analysis of commodity-grade components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also provided.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9