1-20 of 875

Search Results for AMS designations

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
...-AM technology. Technological developments to accelerate the recovery of the implant site and reduce damage caused by long-term use are underway. For example, 3D bone data obtained from magnetic resonance imaging (MRI) or computed tomography (CT) can be used to design an implant shape in computer...
Image
Published: 30 June 2023
Fig. 2 Additive manufacturing (AM) part design workflow and related data. CAD, computer-aided design More
Image
Published: 30 June 2023
Fig. 1 Relationships between AM process parameters (including design and feedstock quality), process signatures that may be detected by in situ monitoring, and part quality metrics obtained from postbuild characterization. Reprinted from Ref 2 with permission from ASTM International More
Image
Published: 30 June 2023
Fig. 2 Additive manufacturing (AM) maturity model. DFAM, design for additive manufacturing; MFAM, manufacturing for additive manufacturing. Courtesy of The Barnes Global Advisors More
Image
Published: 30 June 2023
Fig. 2 General design for additive manufacturing (AM) process. FEM, finite-element modeling. Reprinted with permission of ASTM International More
Image
Published: 30 June 2023
Fig. 1 Overview of additive manufacturing (AM) data across the design-to-product transformation. Examples are shown of the types of information found in the AM workflow, highlighting six individual phases and the transitions between the phases. NDE, nondestructive evaluation More
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006947
EISBN: 978-1-62708-439-0
... Abstract Additive manufacturing (AM) processes fabricate parts in a layer-by-layer manner by which materials are added and processed repeatedly. This article introduces the general concepts and approaches to design for AM (DFAM) and outlines important implications for part characteristics...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006958
EISBN: 978-1-62708-439-0
... part selection, design optimization, and process planning, control, and inspection. Qualification and certification standardization is discussed, as is a commitment to reduce the carbon footprint of the manufacturing sector through AM. It ends with the future outlook of AM in the oil and gas industry...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006950
EISBN: 978-1-62708-439-0
... Abstract Additive manufacturing (AM) provides exceptional design flexibility, enabling the manufacture of parts with shapes and functions not viable with traditional manufacturing processes. The two paradigms aiming to leverage computational methods to design AM parts imbuing the design...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006948
EISBN: 978-1-62708-439-0
... Abstract Additive manufacturing (AM) offers expansive design freedoms for realizing parts that are more complex and customized than their conventionally fabricated counterparts, but all AM technologies impose restrictions on buildable geometries and features. Design rules capture those...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006957
EISBN: 978-1-62708-439-0
... presents two key opportunities for AM related to automotive applications, specifically within the realm of metal laser powder-bed fusion: alloys and product designs capable of high throughput. The article also presents the general methodology of alloy development for automotive AM. It provides examples...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003092
EISBN: 978-1-62708-199-3
... (ASTM) designations, Aerospace Material Specification (AMS), and other international designations and specifications. alloy steel AMS designations ASTM designations carbon steel high-strength steel sheet SAE-AISI designations steel classifications steel products steel specifications UNS...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006949
EISBN: 978-1-62708-439-0
.... (a) Original assembly design. (b) Consolidated design. Adapted from Ref 4 Part Consolidation in Additive Manufacturing Context The advances in AM processes have brought new opportunities for PC. On one hand, AM offers so-called “complexity for free” capability, meaning that the number of static...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006969
EISBN: 978-1-62708-439-0
... to take advantage of them. The AM maturity model breaks down potential additively manufactured products into five levels: preproduction, production influence, substitution, functional designs, and multifunctional. The business value of these levels is further described and evaluated with respect...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006560
EISBN: 978-1-62708-290-7
... Abstract This article introduces the design and manufacturing implications of additive manufacturing (AM) on part characteristics as well as on design opportunities and on manufacturing practices, supply chains, and even business models. In addition, it describes how they relate...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... Abstract This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007020
EISBN: 978-1-62708-439-0
... Overview Built as digital manufacturing technologies, additive manufacturing (AM) processes are inherently reliant on data availability. Data formats play an integral role in the ability to take advantage of design flexibilities, manufacture what is designed, fabricate consistent parts, and ultimately...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006970
EISBN: 978-1-62708-439-0
... on the feasibility of using flagship alloys to manufacture complex components. This article presents one example of an aluminum alloy design tailored for laser powder-bed fusion AM. It discusses the integrated computational materials engineering design approach. The article also presents the design for high-strength...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006965
EISBN: 978-1-62708-439-0
... Abstract Additive manufacturing (AM) creates parts layer by layer directly from three-dimensional computer-aided design data. This article discusses systematic ways to address the challenges in AM data integration by exploring various AM-specific data-integration scenarios that can improve...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006983
EISBN: 978-1-62708-439-0
... Abstract This article presents the use of additive manufacturing (AM) in the space industry. It discusses metal AM processes and summarizes metal AM materials, including their relevant process categories and references. It also presents the design for AM for spacecraft. The article also...