Skip Nav Destination
Close Modal
Search Results for
ABS plastic
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 304 Search Results for
ABS plastic
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 1995
Fig. 3 Typical ABS plastic with rubber particles (dark areas) dispersed in the SAN matrix (light background areas). Source: Ref 1
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003022
EISBN: 978-1-62708-200-6
... variety of substrates—including glass, plastics, flowers, butterflies, and baby shoes—were plated in this manner ( Ref 2 ). Metallizing of plastics was practiced in a limited fashion until the 1960s, when large-scale commercial electroplating of acrylonitrile-butadiene-styrene (ABS) plastics began...
Abstract
The process of coating plastics with metals for functional purposes is called metallizing of plastics. This article discusses the metallizing of plastics, provides information on its history, and gives a short note on applications and adhesion properties of metallic coatings. It also discusses the selection of plastics for plating. This article also describes metallizing techniques, including plating (electrolytic or electroplating), vacuum metallizing and thermal spraying, and environmental considerations. The article discusses the quality assurance procedures for metallized plastic parts which include tests that assess the quality of the finish, coating thickness, adhesion, and corrosion resistance, and gives a short note on service performance, which includes service condition classifications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003008
EISBN: 978-1-62708-200-6
... matrix phase. The second phase is composed of dispersed polybutadiene particles, which have a layer of SAN grafted onto their surface. The layer of SAN at the interface makes the two phases compatible. The morphology of a typical ABS plastic is shown in the transmission electron micrograph in Fig. 3...
Abstract
This article discusses the family characteristics, commercial forms, applications, resin grades, and mechanical and physical properties of traditional engineering thermoplastics in their neat (unmodified) form and as compounds and composites, namely, acrylonitrile-butadiene-styrenes, acrylics, high-density polyethylenes, reinforced polypropylenes, high-impact polystyrenes, polyvinyl chloride, styrene-acrylonitriles, and styrene-maleic anhydrides.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003012
EISBN: 978-1-62708-200-6
... Table 2 Antistatic agents used in plastics Agent Characteristics Plastics Amines Effective in films and molded parts; nonvolatile; nonoxidizing Acrylic resins, amino resins, polyamide resins, unsaturated polyesters, ABS, PB, HDPE, LLDPE, LDPE, PET, PP, PS, PUR, PVC Quaternary ammonium...
Abstract
Additives for plastics and elastomers are used to increase the ease of processing and to improve the properties of the final product. Additives improve processing characteristics by increasing lubricity and by stabilizing the polymer. Additives that improve properties include those that decrease static charge development and microbial activity and those that improve flame retardation characteristics, color, light stability, impact resistance, density and mechanical properties. This article focuses on the additives for polymers and elastomers that are used for improving processing--blowing agents, mold-release agents, lubricants, plasticizers, and heat stabilizers--and for improving properties antimicrobials, antioxidants, antistatic agents, colorants, fillers and fiber reinforcements, flame retardants, impact modifiers, light stabilizers, plasticizers, and heat stabilizers. Furthermore, it discusses the method for addition of these additives and the problems faced during compounding.
Image
in Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
> Mechanical Testing and Evaluation
Published: 01 January 2000
Fig. 34 Schematic bithermal hysteresis loop (out-of-phase cycle) Strain Type of strain Temperature Action AB Elastic + plastic Low Rapid straining BC Elastic unloading Low Rapid straining CD Thermal expansion Low-high Zero stress DE Elastic + plastic High
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002477
EISBN: 978-1-62708-194-8
... and structural geometry factor and a is crack length. Typical crack propagation curves for a number of plastics ( Ref 9 ) are shown in Fig. 9 . Fig. 9 Fatigue crack propagation behavior. ABS, acrylonitrile-butadiene-styrene; PC, polycarbonate; M-PPE, modified polyphenylene ether Fatigue lifetime...
Abstract
The key to any successful part development is the proper choice of material, process, and design matched to the part performance requirements. Understanding the true effects of time, temperature, and rate of loading on material performance can make the difference between a successful application and catastrophic failure. This article provides examples of reliable material performance indicators and common practices to avoid failure. Simple tools and techniques for predicting part mechanical performance integrated with manufacturing concerns, such as flow length and cycle time, are demonstrated. The article describes the prediction of mechanical part performance for stiffness, strength/impact, creep/stress relaxation, and fatigue.
Image
Published: 01 January 2000
Fig. 23 Rockwell hardness of engineering plastics. PET, polyethylene terephthalate; PA, polyamide; PPO, polyphenylene oxide; PBT, polybutylene terephthalate; PC, polycarbonate; ABS, acrylonitrile-butadienestyrene
More
Image
in Mechanical Testing and Properties of Plastics—An Introduction
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 12 Flexural modulus of engineering plastics at elevated temperatures. PET, polyethylene terephthalate; PBT, polybutylene terephthalate; ABS, acrylonitrile-butadiene-styrene; PA, polyamide; PSU, polysulfone
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
..., rigid 41 6.0 … … Polystyrene, impact grades 41 6.0 19 2.8 Polypropylene, general purpose 36 5.2 33 4.8 ABS/polyurethane 31 4.5 26 3.7 Polypropylene, high impact 30 4.3 19 2.8 At 0.2% offset for metals, unless otherwise noted; tensile strength at yield for plastics...
Abstract
This article is a comprehensive collection of tables that list the values for hardness of plastics, rubber, elastomers, and metals. The tables also list the tensile yield strength and tensile modulus of metals and plastics at room temperature. A comparison of various engineering materials, on the basis of tensile strength, is also provided.
Image
Published: 01 January 2000
Fig. 12 Compressive strength of engineering plastics. PA, polyamide; PET, polyethylene terephthalate; PBT, polybutylene terephthalate; PPO, polyphenylene oxide; PC, polycarbonate; ABS, acrylonitrile-butadiene-styrene
More
Image
Published: 01 January 2000
Fig. 15 Flexural modulus retention of engineering plastics at elevated temperatures. PET, polyethylene terephthalate; PBT, polybutylene terephthalate; ABS, acrylonitrile-butadiene-styrene; PA, polyamide; PSU, polysulfone
More
Image
in Mechanical Testing and Properties of Plastics—An Introduction
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 10 Compressive strength of engineering plastics. PA, polyamide; PET, polyethylene terephthalate; PBT, polybutylene terephthalate; PPO, polyphenylene oxide; PC, polycarbonate; ABS, acrylonitrile-butadiene-styrene
More
Image
in Mechanical Testing and Properties of Plastics—An Introduction
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 20 Rockwell hardness of engineering plastics. PET, polyethylene terephthalate; PA, polyamide; PPO, polyphenylene oxide; PBT, polybutylene terephthalate; PC, polycarbonate; ABS, acrylonitrile-butadiene-styrene
More
Image
Published: 01 November 1995
Fig. 44 Apparent creep modulus of glass-filled engineering plastics at room temperature, 14 MPa (2 ksi), 100 h. ABS, acrylonitrile-butadience-styrene; PA, polyamide (nylon)
More
Image
in Ultrasonic and Thermal Metal Embedding for Polymer Additive Manufacturing
> Additive Manufacturing Processes
Published: 15 June 2020
Fig. 3 Comparison of yield strength between materials that can be 3D printed with wire and subjected to plastic injection molding. ABS, acrylonitrile butadiene styrene; FDM, fused deposition modeling; SS, stainless steel; CR, corrosion resistant; LWF, lightweight particle filtering; SCR, super
More
Image
in Navigating the Plastic Material Selection Process
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 4 Relative temperature use scale of various plastics. PI, Polyimide; PAI, Polyamidimide; PEI, Polyetherimide; PPSU, Polyphenylene sulfone; PSU, Polysulfone; PC, Polycarbonate; PMMA, Polymethylmethacrylate; PPE, Polyphenylene ether; ABS, Acrylonitrile-butadiene-styrene; PS, Polystyrene
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003310
EISBN: 978-1-62708-176-4
... with information on the alternative methods for determining the fracture toughness of polymer materials. J-integral-based single specimen technique J-integral-based multiple specimen technique plane strain fracture toughness thin sheets thin films fracture toughness plastics linear elastic fracture...
Abstract
This article discusses the J-integral-based single and multiple specimen techniques of the ASTM E 1737 test method for determining plane strain fracture toughness of polymeric materials. It describes the fracture toughness testing of thin sheets and films. The article concludes with information on the alternative methods for determining the fracture toughness of polymer materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003026
EISBN: 978-1-62708-200-6
... 14 10 15 10 11 10 11 10 14 10 14 10 16 (a) ABS, acrylonitrile-butadiene-styrene. Source: Ref 1 Conductive or Semiconductive Plastics Although plastics have traditionally been used as electrical insulators, there is a growing market for plastics with increased...
Abstract
In terms of their electrical properties, plastics can be divided into thermosetting and thermoplastic materials, some of which are conductive or semiconductive. This article provides detailed information on factors that affect the property of plastics. It discusses the major test methods used to determine the following dielectric properties of plastics: dielectric breakdown voltage, dielectric strength, dielectric constant, dissipation factor, arc tracking resistance, insulation resistance, volume, and surface resistivity or conductivity. The test specifications and conditions, recommended by several U.S. and foreign testing organizations for characterizing the electrical properties of plastic materials are listed. The article describes the influence of these properties on selection of plastics for insulation application. An outline of the electromagnetic shielding and testing methods of electromagnetic interference are also provided. Designations, electrical properties, and applications of elastomers are tabulated.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... Abstract This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003007
EISBN: 978-1-62708-200-6
... Abstract Engineering plastics offer unique product benefits based on physical properties, or combinations of physical properties, that allow vastly improved product performance. Providing an overview of the general characteristics and the mechanical and environmental stress response...
Abstract
Engineering plastics offer unique product benefits based on physical properties, or combinations of physical properties, that allow vastly improved product performance. Providing an overview of the general characteristics and the mechanical and environmental stress response of engineering plastics, this article discusses various factors, including thermal, mechanical and electrical properties, environmental factors, and material cost that are important in the selection of engineering plastics for specific applications.
1