Skip Nav Destination
Close Modal
Search Results for
4140
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 395 Search Results for
4140
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1986
Fig. 7 Flow lines in a forged 4140 steel hook. Specimen was etched using 50% HCl. 0.5×
More
Image
Published: 01 January 2005
Fig. 5 Compressive flow curve for 4140 alloy steel at room temperature. Large strain was achieved by removing the barreling by machining after 40% strain and then continuing the test. Source: Ref 7
More
Image
Published: 01 January 2005
Fig. 19 Flow lines in a forged 4140 steel hook. Specimen was etched using 50% HCl. Original magnification 0.5×
More
Image
Published: 01 January 2005
Fig. 23 Flow lines in a forged 4140 steel hook. Specimen was etched using 50% HCl. 0.5x
More
Image
Published: 01 January 2002
Fig. 35 Micrograph of AISI 4140 steel as quenched and tempered. The microstructure is tempered martensite with evidence of decarburization and high-temperature oxidation on the surface of the crack profile. 50×; 2% nital etch. Source: Ref 27
More
Image
Published: 01 January 2002
Fig. 36 Micrograph of AISI 4140 steel as quenched and tempered. The microstructure is tempered martensite with intergranular quench cracking along the prior austenite grain boundaries. 100×; 2% nital etch. Source: Ref 27
More
Image
Published: 01 January 2002
Fig. 42 Micrograph of AISI 4140 steel as quenched and tempered. The microstructure is tempered martensite with quench cracking in the area of dimensional change. 91×; 2% nital etch. Source: Ref 27
More
Image
Published: 01 January 2002
Fig. 44 Micrograph of AISI 4140 steel as quenched and tempered. The microstructure is tempered martensite with quench cracking initiating from a machine groove. 100×; 2% nital etch. Source: Ref 27
More
Image
Published: 01 January 2002
Fig. 71 Micrograph of AISI 4140 steel as quenched and tempered; microstructure is tempered martensite, where cracking is promoted by alloy depletion. 91×; 2% nital etch. Source: Ref 27
More
Image
Published: 01 January 2002
Fig. 86 Micrograph of AISI 4140 steel as quenched and tempered, showing bands of tempered martensite and tempered martensite/bainite. 50×; 2% nital etch. Source: Ref 27
More
Image
Published: 01 January 2002
Fig. 87 Micrograph of AISI 4140 steel as quenched and tempered. Microstructure shows banded martensite and tempered martensite/bainite. Subsurface cracking is illustrated. 100×; 2% nital etch. Source: Ref 27
More
Image
Published: 01 January 2002
Fig. 15 “Tire tracks” on a fatigue fracture surface of a 4140 steel quenched and tempered at 700 °C (1292 °F)
More
Image
in Hardenable Carbon and Low-Alloy Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 12 Hardness and notch toughness of 4140 steel tempered for 1 h at various temperatures
More
Image
Published: 01 August 2013
Fig. 10 Bending fatigue S - N curves for AISI 4140 specimens having normal and inverse hardness distributions after quenching. All specimens were tempered for 2 h at 500 °C. Source: Ref 6
More
Image
Published: 01 August 2013
Fig. 15 Tempering curves for (a) 4140 and (b) 4340 steels. Source: Ref 17
More
Image
Published: 01 August 2013
Fig. 8 Continuous-cooling transformation diagrams for AISI (a) 4140 and (b) 4340 steels
More
Image
in Characterization of Heat Transfer during Quenching
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 5 Cooling curve measured at the centerline of an AISI 4140 cylindrical probe quenched in a fluidized bed (alumina plus air at room temperature) and with a fluidization number of 1.4. Source Ref 31
More
Image
Published: 01 August 2013
Fig. 3 Results of liquid pressure nitriding on SAE 4140 low-alloy steel (composition, 0.38C-0.89Mn-1.03Cr-0.18Mo; core hardness, 35 HRC)
More
Image
in Plasma (Ion) Nitriding and Nitrocarburizing of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 13 Comparison of case depth vs. process time for ion and gas nitriding of 4140 steel. Source: Ref 18
More
Image
in Plasma (Ion) Nitriding and Nitrocarburizing of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 20 Compound layer on the ion-nitrided surface of quenched and tempered 4140 steel. The compound layer is supported by a diffused case, which is not observable in this micrograph. Nital etched. Original magnification: 500×
More
1