1-20 of 62 Search Results for

3D hot-spot localization

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003760
EISBN: 978-1-62708-177-1
... Abstract Three-dimensional microscopy can be used to reveal the shape, distribution, and connectivity of three-dimensional (3D) features that lie buried within an opaque material. This article discusses several experimental techniques that can be used to generate 3D images. These include serial...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006564
EISBN: 978-1-62708-290-7
... for one layer are added, and these accumulated layer images are stacked to form a record of the build. This 3D optical tomography (OT) image, similar in format to x-ray CT data, can be examined to identify and locate relative hot and cold spots that occurred during the build. This system includes...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006549
EISBN: 978-1-62708-290-7
... particular relationship that includes three fundamental parameters is local energy density, which defines the energy available for melting and deposition of material during DED. Local energy density ( E d ) is described by: (Eq 1) E d = β P V d spot where β is the bulk absorption...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.9781627082907
EISBN: 978-1-62708-290-7
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
... and Manufacturing Considerations of 3D-Printed, Commercially Pure Titanium and Titanium Alloy-Based Orthopedic Implants" and "Device Testing Considerations Following FDA Guidance" for additive-manufactured medical devices. These are further subdivided into five major focus areas: materials; design, printing...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006862
EISBN: 978-1-62708-392-8
... equipment Material extrusion ( Ref 14 , 15 ) Material jetting ( Ref 16 ) Polymers ( Ref 14 – 16 ) Tissue scaffolds Material extrusion ( Ref 51 ) Material jetting ( Ref 52 ) Powder-bed fusion ( Ref 53 ) Vat polymerization ( Ref 54 ) Polymers ( Ref 51 – 54 ) Fig. 1 Three-dimensional (3D...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.9781627082075
EISBN: 978-1-62708-207-5
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006508
EISBN: 978-1-62708-207-5
... castings be modeled to ensure that isolated hot spots do not develop during solidification that cannot be fed. The Lost Foam Consortium at University of Alabama-Birmingham and Flow Science (the owners of FLOW-3D) have made quantum leaps in modeling real lost foam castings and can predict the location...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006574
EISBN: 978-1-62708-290-7
..., and computer numerical control (CNC) machining operations to create three-dimensional (3D) metal parts ( Ref 1 , 2 ). The process uses metal foils, including tapes, as feedstock and lays down layers side by side and on top of each other, creating a 3D part. With intermittent CNC machining, intricate features...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006883
EISBN: 978-1-62708-392-8
... deposition. This article discusses the processes involved in polymer powder 3D printing using laser fusion/ sintering and fusing agents and energy, as well as the thermally fused PBF. It provides information on polymer powder parameters and modeling, the powder-handling system, powder characterization...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... the modeling and prototyping of new designs of parts from designs developed in computer programs. Distributed computing and dedicated computation capability are critical in the AM process, because each AM machine needs to form the part digitally, transferring the three-dimensional (3D) computer model...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005136
EISBN: 978-1-62708-186-3
... of warped parts. A small area is heated to a dull red. The localized heating causes the workpiece to expand, but some straightening occurs during cooling. Skillful heating, cooling, and gaging of the workpiece can result in reasonable straightness. Torch heating causes soft spots in hardened steel...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... be insulated and contain cooling lines to provide thermal separation between the hot barrel and the hopper. This prevents material from melting prematurely and forming a solid plug (referred to as a bridge) that blocks material from feeding to the extruder. Located inside the cylindrical barrel channel...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005531
EISBN: 978-1-62708-197-9
.... In addition to modeling of the part performance, modeling of thermal AM processes focuses on the localized melting occurring at the point of intersection between the laser spot and the metal powder layer. In the case of 3-D printing, modeling is used to optimize the debinding and sintering process, which...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005501
EISBN: 978-1-62708-197-9
... the 1980s. Simulation technology has come a long way since the early to mid-1980s, when the design engineer could only work with two-dimensional models. The early days focused on identifying hot spots in the casting. As the computer-aided design and numerical simulation software packages evolved, foundry...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005504
EISBN: 978-1-62708-197-9
... 5.5 software on a Silicon Graphics Onyx workstation was used to read in these ASCII data sets, filter, and render them as isosurfaces and ray-traced volumetric images. (3-D reconstruction algorithms and isosurface versus volumetric images are discussed earlier.) Spot noise was removed using a “Median...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
.... This requirement presents a unique dilemma for AM processing because nearly all processes to date use powder metal feedstocks with high oxygen content as a result of the high cumulative surface area of the powder. As is the case for most AM metal materials, the AM community has leveraged existing powder metal/hot...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005151
EISBN: 978-1-62708-186-3
... of the 20th century. Throughout the 1970s and early 1980s, most studies were limited to either axisymmetric or plane-strain problems or to three-dimensional (3D) problems with simple geometry, such as cups. However, these studies only provided general information on a variety of important issues on sheet...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005513
EISBN: 978-1-62708-197-9
... in the vicinity, and the process repeats until such time that the scattered energy escapes away from the substrate and the additive material. This results in a higher value of absorptance. The re-reflection also occurs between the substrate surface and the powder particles. The laser spot is occluded...