Skip Nav Destination
Close Modal
Search Results for
316LR
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-14 of 14
Search Results for 316LR
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Mechanically forced shearing fracture of type 316LR stainless steel screw. ...
Available to PurchasePublished: 01 January 2002
Fig. 11 Mechanically forced shearing fracture of type 316LR stainless steel screw. (a) Fracture surface with typical spiral deformation texture. SEM. (b) Close-up of fracture surface with shear dimples oriented in twisting direction. (c) Fracture edge with flow lines. (d) Longitudinal
More
Image
Type 316LR stainless steel screws that failed by fatigue. (a) Fatigue fract...
Available to PurchasePublished: 01 January 2002
Fig. 14 Type 316LR stainless steel screws that failed by fatigue. (a) Fatigue fractures at different thread levels. (b) Longitudinal section perpendicular to fracture surface without deformation zone at fracture site. A small secondary crack is shown at thread site (arrow). 55×. (c) Fatigue
More
Image
Crack initiation on type 316LR stainless steel dynamic compression plate. (...
Available to PurchasePublished: 01 January 2002
Fig. 15 Crack initiation on type 316LR stainless steel dynamic compression plate. (a) Anterior-posterior radiograph. The plate was used to treat the nonunion of a fracture between the fourth and seventh screws. The plate was bent intraoperatively to fit the contour of the bone. (b) Radiograph
More
Image
Top surface of broken plate of type 316LR stainless steel. Fatigue cracks p...
Available to PurchasePublished: 01 January 2002
Fig. 17 Top surface of broken plate of type 316LR stainless steel. Fatigue cracks parallel to the fracture edge and a wide area exhibiting primary fatigue deformation are visible. 65×
More
Image
Fatigue curves of type 316LR stainless steel implant material tested in ben...
Available to PurchasePublished: 01 January 2002
Fig. 21 Fatigue curves of type 316LR stainless steel implant material tested in bending mode. (a) S-N curves for stainless steel in cold-worked and soft condition that was tested in air and aerated lactated Ringer's solution. (b) Fatigue curve for number of cycles to failure as shown in Fig
More
Image
Cold-worked type 316LR stainless steel that was fatigued in air at differen...
Available to PurchasePublished: 01 January 2002
Fig. 24 Cold-worked type 316LR stainless steel that was fatigued in air at different stress levels. Surfaces of broken specimens at fracture edge are shown. (a) Failure at an applied stress of 330 MPa (47.8 ksi) after 7,682,434 load cycles. Only a few glide systems adjacent to the fracture
More
Image
Fretting and fretting corrosion at the contact area between the screw hole ...
Available to PurchasePublished: 01 January 2002
Fig. 30 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate hole showing mechanical and pitting corrosion attack. 15×. (b) Higher-magnification view of shallow
More
Image
Fretting and fretting corrosion at the contact area between the screw hole ...
Available to PurchasePublished: 01 January 2002
Fig. 35 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate hole showing mechanical and pitting corrosion attack. 15×. (b) Higher-magnification view of shallow
More
Image
Fretting and fretting corrosion at the contact area between the screw hole ...
Available to PurchasePublished: 15 January 2021
Fig. 42 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate hole showing mechanical and pitting corrosion attack. Original magnification: 15×. (b) Higher
More
Image
Free surface replica showing the development of fatigue-surface damage on r...
Available to PurchasePublished: 01 January 2002
Fig. 23 Free surface replica showing the development of fatigue-surface damage on recrystallized type 316LR stainless steel in aerated Ringer's solution at 38 °C (100 °F), at applied stress of 250 MPa (35.5 ksi). (a) The first visible slip systems developed at a triple point (decorated
More
Image
Secondary corrosion attack on fatigue-fracture surface. (a) Fracture surfac...
Available to PurchasePublished: 01 January 2002
Fig. 22 Secondary corrosion attack on fatigue-fracture surface. (a) Fracture surface of 5-mm (0.2-in.) long crack in an intramedullary tibia nail made of cold-worked type 316LR stainless steel. The crack developed during the early postoperative stage when the fixation was unstable and bending
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
.... Example 5: Shearing Fracture of a Type 316LR Stainless Steel Screw The cortical bone screw shown in Fig. 11 broke during the internal fixation procedure. It may have been inserted very obliquely in the screw hole and therefore sheared off. The fracture surface ( Fig. 11a ) exhibited extensive...
Abstract
This article commences with a description of the prosthetic devices and implants used for internal fixation. It describes the complications related to implants and provides a list of major standards for orthopedic implant materials. The article illustrates the body environment and its interactions with implants. The considerations for designing internal fixation devices are also described. The article analyzes failed internal fixation devices by explaining the failures of implants and prosthetic devices due to implant deficiencies, mechanical or biomechanical conditions, and degradation. Finally, the article discusses the fatigue properties of implant materials and the fractures of total hip joint prostheses.
Book Chapter
Fretting Wear Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.