Skip Nav Destination
Close Modal
Search Results for
3-D solid elements
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1823 Search Results for
3-D solid elements
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2001
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003389
EISBN: 978-1-62708-195-5
... on micromechanics and macromechanics. The article describes the FEA of 3-D solid elements, 2-D cylindrical shell elements, and 1-D beam elements. It contains a table that lists the commercially available finite element codes related to the analysis of fibrous composite materials. The article presents classical...
Abstract
This article provides an overview of the finite-element-based analyses (FEA) of advanced composite structures and highlights key aspects such as the homogenization of materials properties and post-processing of numerical results. It discusses the analysis of composite structures based on micromechanics and macromechanics. The article describes the FEA of 3-D solid elements, 2-D cylindrical shell elements, and 1-D beam elements. It contains a table that lists the commercially available finite element codes related to the analysis of fibrous composite materials. The article presents classical examples of the mechanics of composite materials to illustrate the aspects of multilayered composite structures.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005237
EISBN: 978-1-62708-187-0
... a differential volume element of the solidifying alloy and assume no diffusion in the solid. Mass conservation of any solute element in the alloy, in the absence of transport across the volume element, is: (Eq 1) ( C L − C S * ) d f S = ( 1 − f S ) d C L where C L...
Abstract
In order to model macrosegregation, one must consider convection and the partitioning of segregating elements at the dendritic length scale. This article describes microsegregation with diffusion in the solid. It presents a continuum model of macrosegregation and illustrates the simulation of macrosegregation and microsegregation.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006544
EISBN: 978-1-62708-183-2
... unit cell is given in Fig. 3(a) 3(b) , 3(c) , and 3(d) and is identified next to it. To assist in classification and identification, each crystal structure type is assigned a representative substance (element or phase) having that structure. The substance selected is called the structure...
Abstract
The crystal structure of a material is an important aspect of corrosion and oxidation processes. This article provides a general introduction to the crystal structure of materials, providing information on the crystal systems, lattice dimensions, nomenclature, and solid-solution mechanisms used to characterize structures. It illustrates the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to the Pearson symbol. The space lattice and crystal system, space-group notation, and prototype for each crystal are also illustrated.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001726
EISBN: 978-1-62708-178-8
... or † = limited number of elements or groups; S or * = under special conditions; D = after dissolution/extraction; V = volatile solids or components (can also be analyzed by GC/MS), pyrolyzed solids; C = crystalline solids Method Elem Speciation Compound Iso/Mass Qual Semiquant Quant Macro/Bulk...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001059
EISBN: 978-1-62708-162-7
...- corrosion cracking (b) Gas Arc Resistance spot and seam 1050 O A A A E A A B A A Chemical equipment, railroad tank cars H12 A A A E A A A A A H14 A A A D A A A A A H16 A A B D A A A A A H18 A A B D A A A A A 1060 O A A A E...
Abstract
Aluminum mill products are those that have been subjected to plastic deformation by hot- and cold-working mill processes such as rolling, extruding, and drawing, either singly or in combination. Microstructural changes associated with the working and with any accompanying thermal treatments are used to control certain properties and characteristics of the worked, or wrought, product or alloy. This article discusses the designation system, classification, product forms, corrosion and fabrication characteristics, and applications of wrought aluminum alloys. Commercial wrought aluminum products are divided into flat-rolled products (sheet, plate, and foil); rod, bar, and wire; tubular products; shapes; and forgings. The article discusses factors affecting the strengthening mechanisms, fracture toughness, and physical properties of aluminum alloys, in addition to the effects of alloying on the physical and mechanical properties. Important alloying elements and impurities are listed alphabetically as a concise review of major effects.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003085
EISBN: 978-1-62708-199-3
... freezing, and (d) heating of a homogenized sample. Source: Ref 1 At the left end of the line between α 1 and L 1 , the bulk composition is Y % component B and 100 - Y % component A, and consists of 100% α solid solution. As the percentage of component B in the bulk composition moves...
Abstract
Alloy phase diagrams are useful for the development, fabrication, design and control of heat treatment procedures that will produce the required mechanical, physical, and chemical properties of new alloys. They are also useful in solving problems that arise in their performance in commercial applications, thus improving product predictability. This article describes different equilibrium phase diagrams (unary, binary, and ternary) and microstructures, description terms, and general principles of reading alloy phase diagrams. Further, the article discusses plotting schemes; areas in a phase diagram; and the position and shapes of the points, lines, surfaces, and intersections, which are controlled by thermodynamic principles and properties of all phases that comprise the system. It also illustrates the application of the stated principles with suitable phase diagrams.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006257
EISBN: 978-1-62708-169-6
... of the liquid at a given temperature (as in, e.g., Fig. 2 ). When an incremental amount of solid ( df s ) forms, C s df s solute transfers from the liquid to the solid. As a result, the incremental change in the liquid composition is given by: (Eq 3) d C l = ( C l − C s ) d f...
Abstract
Homogenization heat treatment can be useful for improving the performance and life of an alloy while in service or for improving the processability during fabrication and hot working. This article describes the identification of incipient melt point, slowest-diffusing elements, and microstructural scale for homogenization of metal alloys. It also discusses the CALPHAD software to optimize the homogenization heat treatment and the Scheil module of the commercial thermodynamic modeling software.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
..., on the elastic solid element, Fig. 4(c) the resultant stress, σ (t), on the nearly purely viscous fluid element, and Fig. 4(d) the resultant stress, E(t)* ε 0 , on the viscoelastic material. Viscoelastic materials therefore have finite, non-zero relaxation times ( Ref 4 , 17 ). This generalized description...
Abstract
This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies, as well as the dependence of the viscoelastic character of a plastic on chemical, physical, and compositional variables. By examining the viscoelastic behavior of plastics, the information obtained are then applied in situations in which it may be important to anticipate the long-term properties of a material. This includes assessing the extent of stress decay in materials that are pre-stressed, the noise and vibration transmission characteristics of a material, the amount of heat build-up in a material subjected to cyclic deformation, and the extent a material can recover from any prior deformation. Several qualitative graphs are presented, which highlights the possible differences in the viscoelastic behavior that can exist among plastics.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005592
EISBN: 978-1-62708-174-0
... by longitudinal stress, they mapped only the longitudinal plastic strain component. The plastic strain field was computed by a 2-D generalized plane-strain thermoelastoplastic welding simulation and was applied as a thermal load in a structural 3-D analysis. Solid elements were used in the structural analysis...
Abstract
Fusion welding induces residual stresses and distortion, which may result in loss of dimensional control, costly rework, and production delays. In thermal analysis, conductive heat transfer is considered through the use of thermal transport, heat-input, and material models that provide values for the applied welding heat input. This article describes how the solid-phase transformations that occur during the thermal cycle produced by welding lead to irreversible plastic deformation known as transformation plasticity. Residual stress and welding distortion are also discussed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001301
EISBN: 978-1-62708-170-2
... A. , in Thin Solid Films , No. 31 , 1976 , p 3 10.1016/0040-6090(76)90620-9 2. Hofmann S. and Zalar A. , in Thin Solid Films , No. 39 , 1976 , p 219 10.1016/0040-6090(76)90639-8 3. Briggs D. and Seah M.P. , Ed., Practical Surface Analysis, Vol 1: Auger- and X-ray...
Abstract
Coatings and thin films can be studied with surface analysis methods because their inherently small depth allows characterization of the surface composition, interface composition, and in-depth distribution of composition. This article describes principles and examples of common surface analysis methods, namely, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, secondary ion mass spectroscopy, and Rutherford backscattering spectroscopy. It also provides useful information on the applications of surface analysis.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005209
EISBN: 978-1-62708-187-0
... % C s Solid composition % D Diffusion coefficient in liquid m 2 /s D i Diffusion coefficient across interface m 2 /s D s Diffusion coefficient in solid m 2 /s d Diameter m f s Solid fraction … G Temperature gradient K/m G c Concentration gradient %/m...
Abstract
One impressive example of plane front solidification (PFS) is the industrial production of large silicon single crystals, used mainly as substrates for integrated circuits. This article explores the PFS of a single phase, without taking convection into account. It discusses the solute build-up at the solid-liquid interface forming transients and steady state, the morphological stability/instability and perturbation theory, and rapid solidification effects, including solute trapping and oscillatory instabilities. The article presents a microstructural selection map that presents an overview of interface stability as a function of composition for a given alloy.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... number of elements or functional groups; S = under special conditions (i.e., with tandem mass spectrometer detection); D = after dissolution/extraction; V = volatile solids or components, pyrolyzed solids; C = crystalline solids. (a) AES, Auger electron spectroscopy; AFM, atomic force microscopy; COMB...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005609
EISBN: 978-1-62708-174-0
... of radius r , the free-energy change for homogeneous nucleation is given by: (Eq 5) Δ G hom = − 4 3 π r 3 Δ G v + 4 π r 2 γ SL Fig. 6 Schematic illustrations of homogeneous (a and b) and heterogeneous (c and d) nucleation. Figures on the left...
Abstract
This article reviews the fundamental solidification concepts for understanding microstructural evolution in fusion welds. The common concepts, namely, nucleation, competitive grain growth, constitutional supercooling, solute redistribution, and rapid solidification, depend on the solidification parameters during welding, are discussed. The article discusses important solidification parameters, including temperature gradient, solid/liquid interface growth rate, and cooling rate.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001115
EISBN: 978-1-62708-162-7
...-temperature measurement was made at liquid helium temperature (4.2 K). The electrical resistivity of a metal can be conveniently divided into three parts: (Eq 4) ρ T = ρ th + ρ d + ρ i where ρ T is total resistivity, ρ th is resistivity due to thermal vibrations...
Abstract
The electronic microcircuit industry has placed severe demands on metal suppliers to provide metals of the highest reproducible purity attainable as a result of the constant quest for the true values of physical and chemical properties of metals. This article describes the commonly used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio test methods used to characterize purity. Tables list the values for resistance ratios of zone-refined metals and their corresponding chemical compositions, and provide an example of the detection of impurities to concentrations in the parts per billion range, utilizing a combination of the glow discharge mass spectroscopy method and Leco combustion methods.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005431
EISBN: 978-1-62708-196-2
.... As computing power increased, so did the complexity of finite-element modeling and analysis techniques. The first analyses and elements available were limited to 2-D beams and spars. The progression was then toward three-dimensional (3-D) spars and beams, 2-D solid and axisymmetric elements, and the full 3-D...
Abstract
Several methods are developed for the numerical solution of partial differential equations, namely, meshed-solution methods such as the finite-element method (FEM), finite-difference method, and boundary-element method; and numerical algorithms consisting of so-called meshed-solution methods. This article introduces the methods of so-called meshed solutions, with an emphasis on the FEM. It presents some basic differential equations that are used to model the responses of structures, components, processes, or systems with emphasis on continuum mechanics. The article provides an outline on the mathematical principles of solving differential equations. It also reviews linear structural problems to illustrate the concept of the FEMs.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006299
EISBN: 978-1-62708-179-5
... ( − d f s d t ) where f s and df s / dt are given by the extraction of the heat from the sample ( Eq 3 ). By combining these two relations, one finds the growth rate as a function of fraction solid. If this expression is combined with a kinetic law, the growth temperature can...
Abstract
Thermal analysis is used to analyze solidification processes by recording the temperature as a function of time during cooling or heating of a metal or alloy to or from a temperature above its melting point. This article describes the use of cooling curves for analyzing a solidification process, such as the solidification temperature, structure analysis, fraction of phases and heat of fusion with focus on solidification of cast iron, and the use of cooling curves to control and adjust the casting conditions. It discusses deviations from equilibrium that occur due to kinetic effects during solidification. The article also illustrates the evaluation of fraction of solid formed during the precipitation of austenite from heat balance.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005521
EISBN: 978-1-62708-197-9
..., or 65.61 °F) and 0.15 wt% and 268.52 K (−4.63 °C, or 23.67 °F) and 5.146 wt%, respectively, in the solid and in the liquid. Symmetry conditions are applied at the left and bottom boundaries of the simulation domain in Fig. 3(a) , explaining the arrangement of the four representations (a) to (d) in Fig. 3...
Abstract
This article discusses the three different modeling approaches for grain structures formed during solidification of metallic alloys: direct modeling of dendritic structure, direct modeling of grain structure, and indirect modeling of grain structure. The main construction bases, the scale at which it applies, and the mathematical background are presented for each modeling approach. The article concludes with a table that presents a comparison of the main inputs/outputs, approximations, numerical methods, kinetics laws, and applications for the three approaches to modeling of dendritic grain solidification.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001089
EISBN: 978-1-62708-162-7
... elements in various states of matter Table 1 The electronic structures of the rare earth elements in various states of matter Element Neutral atom configuration 4 f configuration of known oxidation states Metallic state number of electrons M 2+ M 3+ M 4+ Valence 4 f Sc 3 d 4...
Abstract
Rare earth metals belong to Group IIIA of the periodic table that includes scandium, yttrium, and the lanthanide elements which are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. This article classifies the rare earth metals based on their purity level, which are designated as research grades (>99.8% pure) and commercial grades (95% - 98% pure), and describes the preparation and purification, including solid-state electrolysis. It further discusses physical, mechanical, and chemical properties; electronic configurations; crystal structures, and explains the alloy forming characteristics of rare earth elements. The article concludes by describing the various applications of commercial-grade rare earth elements and commercial alloys, which incorporates rare earth elements as additives.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005214
EISBN: 978-1-62708-187-0
... ) where ℓ β is the thickness of the β-phase, t is the time, and D β is the diffusion coefficient in the β-phase. All other terms are concentrations that are defined in Fig. 10 : (Eq 3) d ℓ β d t = d ℓ β / α d t + d ℓ β / L d t = D β...
Abstract
This article describes the three solidification mechanisms of peritectic structures, namely, peritectic reaction, peritectic transformation, and direct precipitation. It discusses the theoretical analysis, which shows that the rate of the peritectic transformation is influenced by the diffusion rate and the extension of the beta-phase region in the phase diagram. The article also provides information on the peritectic transformations in multicomponent systems.
1