Skip Nav Destination
Close Modal
By
Roland Warzel, III
Search Results for
2.5Ni-Cr-Mo
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Search Results for 2.5Ni-Cr-Mo
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
High-Temperature Sintering of Ferrous Powder Metallurgy Components
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006110
EISBN: 978-1-62708-175-7
...-2Cu-2.5Ni and Fe-3Cu materials when high temperature sintered. Fatigue values followed the small increase in tensile strength and remained close to 36% of the ultimate tensile strength, whether the material was sintered conventionally or at higher temperatures. Effect of sintering conditions...
Abstract
High-temperature sintering of ferrous components continues to be important in the powder metallurgy (PM) industry. Improvements in both production rates and properties are possible as sintering temperatures increase above 1120 deg C. This article provides an overview of the different various stages of the sintering process and the physical, chemical, and metallurgical phenomena occur within the mass of metal powder particles. It discusses the four advantages of high-temperature sintering of various ferrous PM materials: improved mechanical properties, improved physical properties, development of liquid phase, and ability to sinter active elements in alloy steels. The article also provides information on three sources of process control requirements, namely, the powder blend, green density, and sintering conditions.
Book Chapter
Martensitic Structures
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003736
EISBN: 978-1-62708-177-1
... temperatures ( Ref 3 ). Various investigations into this phenomenon have produced equations that can be used to predict the effect of composition on the M s temperature, such as the following, determined by Andrews ( Ref 14 ): M s ( ° C ) = 512 − 453 C − 16.9 Ni + 15 Cr − 9.5 Mo...
Abstract
Martensite is a metastable structure that forms during athermal (nonisothermal) conditions. This article reviews the crystallographic theory, morphologies, orientation relationships, habit plane, and transformation temperature of ferrous martensite microstructures. It examines the stages of the tempering process involved in ferrous martensite. The article also describes the formation of the martensite structure in nonferrous systems. It concludes with a discussion on shape memory alloys.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
.... Nominal compositions and densities of selected cast nickel-base superalloys Table 1 Nominal compositions and densities of selected cast nickel-base superalloys Alloy Composition, % Density, g/cm 3 C Cr Co Mo W Ta Nb Al Ti Hf Zr B Ni Other IN-718 0.04 18.5 … 3.0...
Abstract
The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring in the process is the removal of melt contained oxygen by means of a reaction with carbon to form carbon monoxide. A number of casting processes can provide near-net shape superalloy cast parts, but essentially all components are produced by investment casting. The solidification of investment cast superalloy components is precisely controlled so that the microstructure, which ultimately determines mechanical properties, remains consistent. Heat treating cast superalloys involves homogenization and solution heat treatments or aging heat treatments.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001062
EISBN: 978-1-62708-162-7
... to 4.5 Cu, 1.2 to 1.8 Mg, 0.35 Mn max, 0.7 Si max, 1.0 Fe max, 0.25 Cr max, 0.35 Zn max, 0.25 Ti max, 1.7 to 2.3 Ni, 0.05 other (each) max, 0.15 others (total) max, bal Al Consequence of Exceeding Impurity Limits High iron may cause shrinkage difficulties. High silicon decreases mechanical...
Abstract
This article is a compilation of property data for standard grades of cast aluminum alloys. Data are provided for mechanical, thermal, and electrical properties. The listing for each alloy includes commercial names, chemical compositions, applications, relevant specifications, fabrication characteristics, and mass characteristics.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.9781627081627
EISBN: 978-1-62708-162-7