Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25
Segregation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006964
EISBN: 978-1-62708-439-0
Abstract
This article briefly introduces the concept of creep properties of additively manufactured (AM) alloys, with a focus on the effects of the characteristic microstructure of AM alloys on creep performance. Relevant postprocessing treatment also is discussed, in relation to improved creep performance based on the improvement of AM initial microstructure.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006495
EISBN: 978-1-62708-207-5
Abstract
This article describes manufacturing procedures that produce aluminum foams and have since become industrially important and successful. It discusses the foaming of melts by blowing agents and foaming of melts by gas injection. The article focuses on aluminum foams based on the Foaminal technology, because those foams dominate the technical applications of aluminum foams. It also discusses the mechanical properties of metal foams, such as general compression behavior, elastic behavior, strain-rate sensitivity, tensile behavior, ductility, fatigue, and mechanical damping. The article concludes with information on the applications of highly porous metal structures.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006496
EISBN: 978-1-62708-207-5
Abstract
Castability is a complex characteristic that depends on both the intrinsic fluid properties of the molten metal and the manner in which the particular alloy solidifies. This article discusses the practical aspects of solidification important to aluminum foundrymen. The primary focus is on the chemical segregation that occurs during freezing, because it determines the castability of the alloy. The article describes the two types of segregation, namely, microsegregation and macrosegregation. It discusses the effect of freezing range on castability of an alloy. The article lists the freezing range of a number of important alloys. It concludes with a discussion on castability of 2xx, 3xx, 4xx, 5xx, and 7xx alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006257
EISBN: 978-1-62708-169-6
Abstract
Homogenization heat treatment can be useful for improving the performance and life of an alloy while in service or for improving the processability during fabrication and hot working. This article describes the identification of incipient melt point, slowest-diffusing elements, and microstructural scale for homogenization of metal alloys. It also discusses the CALPHAD software to optimize the homogenization heat treatment and the Scheil module of the commercial thermodynamic modeling software.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006021
EISBN: 978-1-62708-175-7
Abstract
This article discusses the process details of metal powder injection molding of microcomponents and the powder particle characteristics of feedstock and property requirements of binders. It reviews important characteristics to be considered in the processing steps: venting, channel diameters, binder segregation, binder degradation, feedstock supply, temperature control, demolding, debinding, and sintering. Finally, the article provides information on powder injection molding mold-filling simulation and two-component powder injection molding, offering a method for high-volume production of microcomponents made of multifunctional materials.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006109
EISBN: 978-1-62708-175-7
Abstract
This article describes the methods for determining the flow rate of metal powders. It examines the factors affecting flow rate, apparent density, and angle of repose of metal powders. The article reviews the frictional properties, cohesive strength, frictional properties, tap density, and compressibility of metal powders. It explains the mechanisms of powder segregation. The article provides information on green strength and springback value of rectangular test bar. It concludes with a discussion on the chemical composition of metal powders.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005967
EISBN: 978-1-62708-166-5
Abstract
Of the various thermal processing methods for steel, heat treating has the greatest overall impact on control of residual stress and on dimensional control. This article provides an overview of the effects of material- and process-related parameters on the various types of failures observed during and after heat treating of quenched and tempered steels. It describes phase transformations of steels during heating, cooling of steel with and without metallurgical transformation, and the formation of high-temperature transformation products on the surface of a carburized part. The article illustrates the use of carbon restoration on decarburized spring steels. Different geometric models for carbide formation are shown schematically. The article also describes the different microstructural features such as grain size, microcracks, microsegregation, and banding.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005501
EISBN: 978-1-62708-197-9
Abstract
This article reviews the topic of computational thermodynamics and introduces the calculation of solidification paths for casting alloys. It discusses the calculation of thermophysical properties and the fundamentals of the modeling of solidification processes. The article describes several commonly used microstructure simulation methods and presents ductile iron casting as an example to demonstrate the ability of microstructure simulation. The predictions for the major defects of casting, such as porosity, hot tearing, and macrosegregation, are highlighted. Finally, several industry applications are presented.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005437
EISBN: 978-1-62708-196-2
Abstract
This article presents the governing equations for moving a solidification front, based on the balance of mass, momentum, energy, and solute. It reviews how material properties and geometry can be analyzed in the context of the governing equations. The article provides several example problems that illustrate how the hierarchy of time and length scales associated with transport leads to the important features of cast microstructures. It includes equations for estimating microsegregation in cast alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005229
EISBN: 978-1-62708-187-0
Abstract
Homogenization, in a broad sense, refers to the processes designed to achieve uniform distribution of solutes or phases in a given matrix. This article addresses the root cause for inhomogeneities in cast components. It is nearly a standard industrial practice to homogenize alloys before thermomechanical processing. The article lists the objectives of homogenization and benefits of homogenization treatments. The benefits include increased resistance to pitting corrosion, increased resistance to stress-corrosion cracking, improved ductility, and uniform precipitate distribution during subsequent aging. The article provides a schematic illustration of an energy-dispersive X-ray spectroscope (EDS) scattered data of solute distributions across a dendrite due to microsegregation of chromium and molybdenum. It concludes with information on the computational modeling for simulation of microsegregation of chromium and molybdenum.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005215
EISBN: 978-1-62708-187-0
Abstract
This article discusses the two extremes of solute redistribution, equilibrium solidification and nonequilibrium Gulliver-Scheil solidification, for which solid redistribution of solute within the primary solid phase is the distinguishing parameter. The process and material parameters that control microsegregation are discussed in relation to the manifestations of microsegregation in simple and then increasingly complex alloy systems. The measurement and kinetics of microsegregation are discussed for the binary isomorphous systems: titanium-molybdenum; binary eutectic systems: aluminum-copper and aluminum-silicon; binary peritectic systems: copper-zinc; multicomponent eutectic systems: Al-Si-Cu-Mg; and for systems with both eutectic and peritectic reactions: Fe-C-Cr and nickel-base superalloy.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005216
EISBN: 978-1-62708-187-0
Abstract
Macrosegregation refers to spatial compositional variations that occur in metal alloy castings and range in scale from several millimeters to centimeters or even meters. This article presents a derivative approach for understanding the mechanism of macrosegregation induced by flow of the liquid and movement of the solid with examples.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005236
EISBN: 978-1-62708-187-0
Abstract
Modeling of structure formation in casting of alloys involves several length scales, ranging from the atomic level to macroscopic scale. Intermediate length scales are used to define the microstructure of the growing phases and the grain structure. This article discusses the principles and applications of the phase field method and the cellular automaton method for modeling the direct evolution of structure at the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of the structure that involves nucleation and growth.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005237
EISBN: 978-1-62708-187-0
Abstract
In order to model macrosegregation, one must consider convection and the partitioning of segregating elements at the dendritic length scale. This article describes microsegregation with diffusion in the solid. It presents a continuum model of macrosegregation and illustrates the simulation of macrosegregation and microsegregation.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005277
EISBN: 978-1-62708-187-0
Abstract
This article provides a discussion on ten rules for the effective production of reliable castings. These rules include good-quality melt, liquid front damage, liquid front stop, bubble damage, core blows, shrinkage damage, convection damage, segregation, residual stress, and location points.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005225
EISBN: 978-1-62708-187-0
Abstract
Spray casting, also known as spray forming, is a niche casting process for the manufacture of preforms. This article lists commercial examples of alloys manufactured by spray casting and provides sequential steps of the spray casting process. Gas atomization is a chaotic, stochastic process that always produces a wide range of droplet diameters. The article schematically illustrates a typical log-normal droplet diameter probability density distribution on a mass or volume basis obtained by gas atomization. It also explains the changes in solid fraction during the spray casting process as a function of axial distance from the point of droplet atomization. The article concludes with information on the occurrence of macrosegregation and coarsening in spray cast preforms.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005226
EISBN: 978-1-62708-187-0
Abstract
Rapid solidification is a tool for modifying the microstructure of alloys that are obtained by ordinary casting. This article describes the fundamentals of the four microstructural changes, namely, microsegregation, identity of the primary phase, identity of the secondary phase, and the formation of noncrystalline phases. It considers three factors to understand the fundamentals of these changes: heat flow, thermodynamic constraints/conditions at the liquid-solid interfaces, and diffusional kinetics/microsegregation. These factors are described in detail.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005208
EISBN: 978-1-62708-187-0
Abstract
This article begins with balance equations for mass, momentum, energy, and solute and the necessary boundary conditions for solving problems of interest in casting and solidification. The transport phenomena cover a vast range of length and time scales, from atomic dimensions up to macroscopic casting size and from nanoseconds for interface attachment kinetics to hours for casting solidification. The article describes how to determine which phenomena are most important at the particular length and time scale for the problem. It concludes with several examples of the application of transport phenomena in solidification, focusing on microstructure formation.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005210
EISBN: 978-1-62708-187-0
Abstract
Nonplanar microstructures form most frequently during the solidification of alloys, and play a crucial role in governing the properties of the solidified material. This article emphasizes the basic ideas, characteristic lengths, and the processing conditions required to control the columnar and equiaxed microstructures. The formation of cellular and dendritic structures in one- and two-phase structures is presented with emphasis on the effect of processing conditions and composition on the selection of microstructure and microstructure scales.
1