Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Spheroidal graphite
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006304
EISBN: 978-1-62708-179-5
Abstract
The solidification of hypoeutectic cast iron starts with the nucleation and growth of austenite dendrites, while that of hypereutectic iron starts with the crystallization of primary graphite in the stable system or cementite in the metastable system. This article begins with a discussion on the nucleation and growth of austenite dendrites. It describes the nucleation of lamellar graphite, spheroidal graphite, and austenite-iron carbide eutectic. The article reviews three main graphite morphologies crystallizing from the iron melts during solidification: lamellar (LG), compacted or vermicular (CG), and spheroidal. It discusses the metastable solidification of austenite-iron carbide eutectic and concludes with information on gray-to-white structural transition of cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006313
EISBN: 978-1-62708-179-5
Abstract
The appearance, morphology, and extent of the casting skin are the consequence of mold-metal interface interaction. This article discusses the classification of the mold-metal interaction based on severity: mild mold-metal interaction and severe mold-metal interaction. The casting surface exhibits some roughness, which depends on the molding materials used in the casting process. The article describes the effects of the casting skin in spheroidal graphite (SG) and compact graphite (CG) irons, as well as the mechanism of casting skin formation. It discusses the physics of liquid metal penetration in sand molds and concludes with information on the effect of sand additives and mold coatings.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001004
EISBN: 978-1-62708-161-0
Abstract
This article discusses the chemical composition, castability, mechanical properties at room temperature and elevated temperature, and physical properties of compacted graphite (CG) cast iron. The change in graphite morphology from the flake graphite (FG) in the base iron to the CG in the final iron is achieved by liquid treatment with different minor elements. CG irons have strength properties close to those of spheroidal graphite (SG) irons, at considerably higher elongations than those of FG iron, and with intermediate thermal conductivities. The main factors affecting the mechanical properties of CG irons both at room temperatures and at elevated temperatures are composition, structure (nodularity and matrix), and section size. The article also discusses the applications of CG irons that stem from their relative intermediate position between FG and SG irons. The tables in the article list the values for tensile properties, hardness, thermal conductivity, fatigue strengths, endurance ratios, and compressive properties of CG, FG, and SG irons.