Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Precipitation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006226
EISBN: 978-1-62708-163-4
Abstract
Similar to the eutectic group of invariant transformations is a group of peritectic reactions, in which a liquid and solid phase decomposes into a solid phase on cooling through the peritectic isotherm. This article describes the equilibrium freezing and nonequilibrium freezing of peritectic alloys. It informs that peritectic reactions or transformations are very common in the solidification of metals. The article discusses the formation of peritectic structures that can occur by three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt. It provides a discussion on the peritectic structures in iron-base alloys and concludes with information on multicomponent systems.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
Abstract
This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders are also reviewed.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties of stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article explains the process features of implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.9781627081979
EISBN: 978-1-62708-197-9
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005230
EISBN: 978-1-62708-187-0
Abstract
This article provides an overview of heat treatment processes, namely, solution heat treatment, quenching, natural aging, and artificial aging. It contains a table that lists the various heat treatment tempers commonly practiced for nonferrous castings. The article describes microstructural changes that occur due to the heat treatment of cast alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003731
EISBN: 978-1-62708-177-1
Abstract
Precipitation reactions occur in many different alloy systems when one phase transforms into a mixed-phase system as a result of cooling from high temperatures. This article discusses the homogenous and heterogeneous nucleation and growth of coherent and semicoherent precipitates. It describes two precipitation modes, namely, general or continuous precipitation and cellular or discontinuous precipitation. The article also provides information on the precipitation sequences in aluminum alloys.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003619
EISBN: 978-1-62708-182-5
Abstract
The article provides an introduction on the importance of alloying elements on corrosion behavior of nickel alloys and describes the applications of heat-resistant alloys to resist corrosion. It focuses on the metallurgical effects, mainly the effect of internal factors, including chemical composition and microstructure of the alloy, and the external factors, including electrolyte composition, temperature, and electrode potential, on the corrosion behavior of corrosion-resistant alloys. The article also discusses the implication of changing the alloy microstructure by second-phase precipitation, cold working, and cast and wrought forms on the corrosion behavior of high-nickel alloys.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003585
EISBN: 978-1-62708-182-5
Abstract
This article reviews the types of passivity and presents tactics that employ passivity to control corrosion. Thermodynamics provides a guide to the conditions under which passivation becomes possible. A valuable guide to thermodynamics is the potential-pH diagram and the Pourbaix diagram. The article presents a potential-pH diagram for the iron-water system and an illustration of an idealized anodic polarization curve for a metal surface, which serves as a basis for describing the kinetics of passivation. It discusses five properties of passive films: thickness, composition, structure, electronic properties, and mechanical properties. The article outlines three possible processes that can form passive films: direct film formation, dissolution precipitation, and anodic oxidation of metal ions in solution. It describes the breakdown of the passive film using various models and highlighting the effect of alloy composition and structure.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001317
EISBN: 978-1-62708-170-2
Abstract
The chemical process being catalyzed should have a high productivity within a specified reactor volume with high reaction rates for the desired reactions and low rates for undesired reaction pathways. This article reviews the general catalyst preparation procedures, namely, impregnation, ion exchange, and precipitation. Catalyst carriers are usually high-surface-area inorganic materials with complex pore structures, into which catalytic materials such as palladium, platinum, cobalt, chromium oxide, and vanadium pentoxide are deposited using these procedures. The article also provides information on catalyst powder processing.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001766
EISBN: 978-1-62708-178-8
Abstract
Analytical transmission electron microscopy (ATEM) is unique among materials characterization techniques as it enables essentially the simultaneous examination of microstructural features through high-resolution imaging and the acquisition of chemical and crystallographic information from small regions of the specimen. This article illustrates the effectiveness of the technique in solving materials problems. The first section of the article provides information on analytical electron microscope (AEM) and its basic operational characteristics as well as on electron optics, electron beam/specimen interactions and the generation of a signal, signal detectors, electron diffraction, imaging, x-ray microanalysis, electron energy loss spectroscopy, and sample preparation. The second section consists of 12 examples, each illustrating a specific type of materials problem that can be solved, at least in part, with AEM.