Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Martensitic transformation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
Abstract
Quenching is a widely used technique to strengthen titanium alloys. This article presents the metallurgical and structural background underlying the specific techniques applied in the quenching of various titanium alloys, and the ways to control and reduce residual stresses induced from quenching or other thermal or mechanical processes. It discusses the types and microstructures of titanium alloys, namely, alpha, alpha-beta, and beta alloys, and describes the general effects of the various heat treatments. The article provides information on quenching media, quenching rate, section size, and martensitic transformation in quenched titanium alloys. It shows how residual stresses in titanium alloys are evaluated and controlled. Finally, the article describes the stress-relief treatments used to reduce residual stresses.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
Abstract
This article reviews the concepts considered important for an understanding of the processes used for preparing cobalt-chromium alloy implants, the microstructures resulting from this processing, and the resulting material properties. The review includes solidification of alloys, diffusionless (martensitic) phase transformation as occurs with face-centered cubic to hexagonal close-packed transformation in cobalt-chromium alloys, and stacking faults and twins and their role in this transformation. It also discusses the strengthening mechanisms that are responsible for the mechanical properties of cast and wrought cobalt alloys. The article contains tables that list the commonly used cobalt alloys and their biomedical applications and chemical compositions. It discusses the mechanical and corrosion properties of cobalt alloys, and provides a description of the microstructure of cobalt alloys.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005435
EISBN: 978-1-62708-196-2
Abstract
This article assesses the evolution of martensite modeling in the changing materials engineering environment. It describes the physics of displacive transformations using Ginzburg-Landau theory, microstructure representation, dynamics and simulations, density functional theory, and shuffle transitions. The article reviews the application of the Ginzburg-Landau approach to rigorous solutions for issues in the structure of a martensitic nucleus based on the martensitic nucleation theory. The three basic behavior modes of martensitic growth, such as elastic, elastic/plastic, and fully plastic are discussed. The article also reviews the overall kinetics of martensitic transformations.