Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 47
Isothermal transformation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.9781627084505
EISBN: 978-1-62708-450-5
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006319
EISBN: 978-1-62708-179-5
Abstract
The transformation of austenite of cast irons represents a more complex and less studied subject. This article discusses the general features of the decomposition of austenite into bainite. It describes the heat treatment cycles of austempered cast iron microstructure. The article reviews several factors, such as presence of graphite and austenite grain size, which affect the transformation rate of austenite during austempering of free-graphite cast irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006314
EISBN: 978-1-62708-179-5
Abstract
The microstructure that develops during the solidification stage of cast iron largely influences the subsequent solid-state transformations and mechanical properties of the cast components. This article provides a brief introduction of methods that can be used for simulating the solidification microstructure of cast iron. Analytical as well as numerical models describing solidification phenomena at both macroscopic and microscopic scales are presented. The article introduces macroscopic transport equations and presents analytical microscopic models for solidification. These models include the dendrite growth models and the cooperative eutectic growth models. The article provides some solutions using numerical models to simulate the kinetics of microstructure formation in cast iron. It concludes with a discussion on cellular automaton (CA) technique that can handle complex topology changes and reproduce most of the solidification microstructure features observed experimentally.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006300
EISBN: 978-1-62708-179-5
Abstract
This article discusses the stable and metastable three-phase fields in the binary Fe-C phase diagram. It schematically illustrates that austenite decomposition requires accounting for nucleation and growth of ferrite and then nucleation and growth of pearlite in the remaining untransformed volume. The article describes the austenite decomposition to ferrite and pearlite in spheroidal graphite irons and lamellar graphite irons. It provides a discussion on modeling austenite decomposition to ferrite and pearlite.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006304
EISBN: 978-1-62708-179-5
Abstract
The solidification of hypoeutectic cast iron starts with the nucleation and growth of austenite dendrites, while that of hypereutectic iron starts with the crystallization of primary graphite in the stable system or cementite in the metastable system. This article begins with a discussion on the nucleation and growth of austenite dendrites. It describes the nucleation of lamellar graphite, spheroidal graphite, and austenite-iron carbide eutectic. The article reviews three main graphite morphologies crystallizing from the iron melts during solidification: lamellar (LG), compacted or vermicular (CG), and spheroidal. It discusses the metastable solidification of austenite-iron carbide eutectic and concludes with information on gray-to-white structural transition of cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006308
EISBN: 978-1-62708-179-5
Abstract
Gray irons are commonly classified by their minimum tensile strength. This article describes properties used in the selection of gray irons and the factors that affect properties, particularly the effect of solidification. It discusses the three steps that its processing undergoes in the foundry: liquid metal preparation, solidification, and solid-state transformation. The article discusses the tensile properties of gray cast iron: tensile strength, yield strength, ductility, and modulus of elasticity. It describes hardness tests that are performed for determining the approximate strength characteristics and machinability of a gray iron casting. The article also presents typical mechanical properties of heat-resistant gray irons in a table. It concludes with information on the automotive application of alloy cast irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006343
EISBN: 978-1-62708-179-5
Abstract
This article discusses the characterization of gray iron structures, following the sequence of structure formation, as it applies to unalloyed or low-alloyed gray iron. Austenite grains are the basic crystallographic entities of the metallic matrix in gray cast iron precipitated from the liquid melt. The article describes the macrostructure and dendrite morphology of primary austenite. Eutectoid transformation in the solid state causes the transformation of austenite to pearlite and/or ferrite, producing the as-cast structure. The article discusses the observations of the graphite and ferritic/pearlitic structure in as-cast gray iron.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
Abstract
Quenching is a widely used technique to strengthen titanium alloys. This article presents the metallurgical and structural background underlying the specific techniques applied in the quenching of various titanium alloys, and the ways to control and reduce residual stresses induced from quenching or other thermal or mechanical processes. It discusses the types and microstructures of titanium alloys, namely, alpha, alpha-beta, and beta alloys, and describes the general effects of the various heat treatments. The article provides information on quenching media, quenching rate, section size, and martensitic transformation in quenched titanium alloys. It shows how residual stresses in titanium alloys are evaluated and controlled. Finally, the article describes the stress-relief treatments used to reduce residual stresses.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
Abstract
This article introduces the mechanism of diffusion and the common types of heat treatments such as annealing and precipitation hardening, which are applicable to most ferrous and nonferrous systems. Three distinct processes occur during annealing: recovery, recrystallization, and grain growth. The article also describes the various types of solid-state transformations such as isothermal transformation and athermal transformation, resulting from the heat treatment of nonferrous alloys. It provides information on the homogenization of chemical composition within a cast structure.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006229
EISBN: 978-1-62708-163-4
Abstract
In some phase diagrams, the appearance of several reactions is the result of the presence of intermediate phases. These are phases whose chemical compositions are intermediate between two pure metals, and whose crystalline structures are different from those of the pure metals. This article describes the order-disorder transformation that typically occurs on cooling from a disordered solid solution to an ordered phase. It provides a table that lists selected superlattice structures and alloy phases that order according to each superlattice. The article informs that spinodal decomposition has been particularly useful in the production of permanent magnet materials, because the morphologies favor high magnetic coercivities. It also describes the theory of spinodal decomposition with a simple binary phase diagram.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006221
EISBN: 978-1-62708-163-4
Abstract
The application of phase diagrams is instrumental in solid-state transformations for the processing and heat treatment of alloys. A unary phase diagram plots the phase changes of one element as a function of temperature and pressure. This article discusses the unary system that can exist as a solid, liquid, and/or gas, depending on the specific combination of temperature and pressure. It describes the accomplishment of conversion between weight percentage and atomic percentage in a binary system by the use of formulas. The article analyzes the effects of alloying on melting/solidification and on solid-state transformations. It explains the construction of phase diagrams by the Gibbs phase rule and the Lever rule. The article also reviews the various types of alloy systems that involve solid-state transformations. It concludes with information on the sources of phase diagram.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006222
EISBN: 978-1-62708-163-4
Abstract
This article begins with the one-component, or unary, diagram for magnesium. The diagram shows what phases are present as a function of the temperature and pressure. When two metals are mixed in the liquid state to produce a solution, the resulting alloy is called a binary alloy. The article describes the various types of solid solutions such as interstitial solid solutions and substitutional solid solutions. Free energy is important because it determines whether or not a phase transformation is thermodynamically possible. The article discusses the thermodynamics of phase transformations and free energy, as well as kinetics of phase transformations. It concludes with a description of solid-state phase transformations that occur when one or more parent phases, usually on cooling, produces a phase or phases.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006226
EISBN: 978-1-62708-163-4
Abstract
Similar to the eutectic group of invariant transformations is a group of peritectic reactions, in which a liquid and solid phase decomposes into a solid phase on cooling through the peritectic isotherm. This article describes the equilibrium freezing and nonequilibrium freezing of peritectic alloys. It informs that peritectic reactions or transformations are very common in the solidification of metals. The article discusses the formation of peritectic structures that can occur by three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt. It provides a discussion on the peritectic structures in iron-base alloys and concludes with information on multicomponent systems.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006227
EISBN: 978-1-62708-163-4
Abstract
Monotectic alloys can be classified based on the difference between the critical temperature and the monotectic temperature. This article begins with a schematic illustration of monotectic reaction in copper-lead system. It discusses the solidification structures of monotectics and illustrates the monotectic solidification for low-dome alloys. The forming mechanism of the banded structure of copper-lead alloy in upward directional solidification is also described.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006228
EISBN: 978-1-62708-163-4
Abstract
Eutectoid and peritectoid transformations are classified as solid-state invariant transformations. This article focuses primarily on the structures from eutectoid transformations with emphasis on the classic iron-carbon system of steel. It reviews peritectoid phase equilibria that are very common in several binary systems. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. The article graphically illustrates the effect of various substitutional alloying elements on the eutectoid transformation temperature and effective carbon content. The partitioning effect of substitutional alloying elements, such as chromium, manganese, and silicon, in pearlitic steel is also illustrated.
Book
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.9781627081634
EISBN: 978-1-62708-163-4
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
Abstract
This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders are also reviewed.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005949
EISBN: 978-1-62708-168-9
Abstract
This article discusses the classification of carbon steels based on carbon content, and tabulates the compositional limits of medium- and high-carbon steels based on the AISI code and other similar codes. It describes recrystallization annealing and spheroidizing of carbon steels, and discusses the classification of carbon steels for heat treatment. The article also discusses the estimation of continuous cooling curves from isothermal transformation curves. It provides information on the Jominy end-quench test and the Grossmann method and the procedures to increase hardenabilty of carbon steels. The article includes information on the purpose of tempering and heat treating guidelines for different grades of steels, including cast carbon steels.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005922
EISBN: 978-1-62708-166-5
Abstract
This article focuses on the cooling process and related transformation behavior of steel wires during patenting to identify a physical metallurgical basis for the development of nontoxic alternatives to molten lead for wire patenting. It describes the materials required, the procedures, and the results of cooling curve analysis. The article schematically summarizes the cooling behaviors of the various cooling media and the microstructure of the pearlite transformation in a lead bath.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005966
EISBN: 978-1-62708-166-5
Abstract
This article focuses on the mechanisms, models, prevention, correction, and effects associated with decarburization inherited from semi-finished product processing prior to induction heating. It discusses the diffusion of carbon in austenitic iron, which has a face-centered cubic crystal structure that provides an interstitial path for the migration of the relatively small carbon atoms. The article describes the evolution of steel microstructure with progressive decarburization (in air) to a steady-state carbon gradient using an iron-iron carbide phase diagram. It provides useful information on the impact of alloying on vulnerability to decarburization, and the impact of decarburization on the mechanical properties of steels and cast irons. The article also describes the technological operations that potentially cause decarburization and the practical implications for induction hardening.
1