Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Transmission electron microscopes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001830
EISBN: 978-1-62708-181-8
Abstract
The purpose of fractography is to analyze fracture features and attempt to relate the topography of the fracture surface to the causes and/or basic mechanisms of fracture. This article reviews the historical development of fractography, from the early studies of fracture appearance dating back to the sixteenth century to the state-of-the-art work in electron fractography and quantitative fractography. It also describes the applications and limitations of scanning electron microscope and transmission electron microscope.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001837
EISBN: 978-1-62708-181-8
Abstract
The principal objective of quantitative fractography is to express the characteristics of features in the fracture surface in quantitative terms, such as the true area, length, size, spacing, orientation, and location. This article provides a detailed account of the development of more quantitative geometrical methods for characterizing nonplanar fracture surfaces. Prominent techniques for studying fracture surfaces are based on the projected images, stereoscopic viewing, and sectioning. The article provides information on various roughness and materials-related parameters for profiles and surfaces. The applications of quantitative fractography for striation spacings, precision matching, and crack path tortuosity are also discussed.