Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1
Analytical electron microscopes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001766
EISBN: 978-1-62708-178-8
Abstract
Analytical transmission electron microscopy (ATEM) is unique among materials characterization techniques as it enables essentially the simultaneous examination of microstructural features through high-resolution imaging and the acquisition of chemical and crystallographic information from small regions of the specimen. This article illustrates the effectiveness of the technique in solving materials problems. The first section of the article provides information on analytical electron microscope (AEM) and its basic operational characteristics as well as on electron optics, electron beam/specimen interactions and the generation of a signal, signal detectors, electron diffraction, imaging, x-ray microanalysis, electron energy loss spectroscopy, and sample preparation. The second section consists of 12 examples, each illustrating a specific type of materials problem that can be solved, at least in part, with AEM.