Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 50
Iron
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006391
EISBN: 978-1-62708-192-4
Abstract
Hardfacing refers to the deposition of a specially selected material onto a component in order to reduce wear in service as a preventative measure or return a worn component to its original dimensions as a repair procedure. This article provides information on various hardfacing materials, namely, iron-base overlays, chromium carbide-based overlays, nickel- and cobalt-base alloys, and tungsten carbide-based metal-matrix composite overlays. It discusses the types of hardfacing processes, such as arc welding processes, and laser cladded, oxyacetylene brazing and vacuum brazing processes. The arc welding processes include shielding metal arc welding, gas metal arc welding/flux cored arc welding, gas tungsten arc welding, submerged arc welding, and plasma transferred arc welding. The article also reviews various factors influencing the selection of the appropriate hardfacing for specific applications.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006324
EISBN: 978-1-62708-179-5
Abstract
This article discusses the influence of microstructure and chemical composition on the physical properties of cast iron. The physical properties include density, thermal expansion, thermal conductivity, specific heat, electrical conductivity, magnetic properties, and acoustic properties. The article describes the properties of liquid iron in terms of surface energy, contact angles, and viscosity. The conductive properties such as thermal and electrical conductivity, of the main metallographic phases present in cast iron are presented in a table. The article discusses the magnetic properties of cast iron in terms of magnetic intensity, magnetic induction, magnetic permeability, remanent magnetism, coercive force, and hysteresis loss. It concludes with a discussion on the acoustic properties of cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006304
EISBN: 978-1-62708-179-5
Abstract
The solidification of hypoeutectic cast iron starts with the nucleation and growth of austenite dendrites, while that of hypereutectic iron starts with the crystallization of primary graphite in the stable system or cementite in the metastable system. This article begins with a discussion on the nucleation and growth of austenite dendrites. It describes the nucleation of lamellar graphite, spheroidal graphite, and austenite-iron carbide eutectic. The article reviews three main graphite morphologies crystallizing from the iron melts during solidification: lamellar (LG), compacted or vermicular (CG), and spheroidal. It discusses the metastable solidification of austenite-iron carbide eutectic and concludes with information on gray-to-white structural transition of cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006305
EISBN: 978-1-62708-179-5
Abstract
The high-alloyed white irons are primarily used for abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing, grinding, and handling of abrasive materials. This article discusses three major groups of the high-alloy white cast irons: nickel-chromium white irons, chromium-molybdenum irons, and high-chromium white irons. Mechanical properties for three white irons representing each of these three general groups are presented as bar graphs. The article also describes the various heat treatments of a martensitic microstructure, including austenitization, quenching, tempering, annealing, and stress relieving.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006295
EISBN: 978-1-62708-179-5
Abstract
The control of the solidification process of cast iron requires understanding and control of the thermodynamics of the liquid and solid phases and of the kinetics of their solidification, including nucleation and growth. This article addresses issues that allow for the determination of probability of formation and relative stability of various phases. These include the influence of temperature and composition on solubility of various elements in iron-base alloys; calculation of solubility lines, relevant to the construction of phase diagrams; and calculation of activity of various components. It discusses the role of alloying elements in terms of their influence on the activity of carbon, which provides information on the stability of the main carbon-rich phases of iron-carbon alloys, that is, graphite and cementite. The article reviews the carbon solubility in multicomponent systems, along with saturation degree and carbon equivalent.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006316
EISBN: 978-1-62708-179-5
Abstract
Thin-wall gray cast iron (TWGCI) can be seen as a potential material for the preparation of lightweight castings in automotive engineering applications. This article discusses the most important challenges for TWGCI: cooling rate, solidification, macrostructure, microstructure, and chilling tendency. It reviews the tensile properties and thermophysical properties of gray cast iron. The article describes the variables that influence molten iron preparation: charge materials, melting furnace thermal regime, chemical composition, modification and inoculation treatment, holding time/pouring procedure, mold properties (mold temperature, thermophysical properties of mold and mold coating), and casting design.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006296
EISBN: 978-1-62708-179-5
Abstract
Cast irons, like steels, are iron-carbon alloys but with higher carbon levels than steels to take advantage of eutectic solidification in the binary iron-carbon system. This article introduces the solid-state heat treatment of iron castings and describes the various processes of heat treatment of cast iron. It provides information on stress relieving, annealing, normalizing, through hardening, and surface hardening of these castings. The article discusses general considerations for the heat treatment of cast iron. Cast irons are occasionally nitrided for various applications with the aim of enhancing surface hardness and corrosion resistance of the products. The article describes molten salt bath cyaniding and ion nitriding of cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006308
EISBN: 978-1-62708-179-5
Abstract
Gray irons are commonly classified by their minimum tensile strength. This article describes properties used in the selection of gray irons and the factors that affect properties, particularly the effect of solidification. It discusses the three steps that its processing undergoes in the foundry: liquid metal preparation, solidification, and solid-state transformation. The article discusses the tensile properties of gray cast iron: tensile strength, yield strength, ductility, and modulus of elasticity. It describes hardness tests that are performed for determining the approximate strength characteristics and machinability of a gray iron casting. The article also presents typical mechanical properties of heat-resistant gray irons in a table. It concludes with information on the automotive application of alloy cast irons.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006241
EISBN: 978-1-62708-163-4
Abstract
This article is a compilation of ternary alloy phase diagrams for which iron (Fe) is the first-named element in the ternary system. The diagrams are presented with element compositions in weight percent. The article includes 16 phase diagrams: Fe-Mn-Ni liquidus projection; Fe-Mn-Ni isothermal section at 750 °C; Fe-Mn-Ni isothermal section at 850 °C; Fe-Mn-Ni isothermal section at 650 °C; Fe-Mn-Ni isothermal section at 550 °C; Fe-Mo-Nb isothermal section at 1050 °C; Fe-Mo-Nb isothermal section at 1150 °C; Fe-Mo-Nb isothermal section at 900 °C; Fe-Mo-Ni liquidus projection; Fe-Mo-Ni isothermal section at 1100 °C; Fe-Mo-Ni isothermal section at 1200 °C; Fe-Ni-W liquidus and solidus projections; Fe-Ni-W isothermal section at 1500 °C; Fe-Ni-W isothermal section at 1455 °C; Fe-Ni-W isothermal section at 1465 °C; and Fe-Ni-W isothermal section at 1400 °C.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006231
EISBN: 978-1-62708-163-4
Abstract
This article describes the liquidus plots, isothermal plots, and isopleth plots used for a hypothetical ternary phase space diagram. It discusses the single-phase boundary (SPB) line and zero-phase fraction (ZPF) line for carbon-chromium-iron isopleth. The article illustrates the Gibbs triangle for plotting ternary composition and discusses the ternary three-phase phase diagrams by using tie triangles. It describes the peritectic system with three-phase equilibrium and ternary four-phase equilibrium. The article presents representative binary iron phase diagrams, showing ferrite stabilization (iron-chromium) and austenite stabilization (iron-nickel).
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006246
EISBN: 978-1-62708-163-4
Abstract
This article presents ternary alloy phase diagrams to be used primarily by engineers to solve industrial problems. The diagrams presented are for stable equilibrium conditions, with the exception of metastable conditions for some diagrams involving carbon and iron. In some ternary diagrams involving carbon and iron, the symbol M is used to represent both iron and the other metallic element when the two metals substitute for each other in a carbide phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006162
EISBN: 978-1-62708-163-4
Abstract
This article is a compilation of binary alloy phase diagrams for which iron (Fe) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006092
EISBN: 978-1-62708-175-7
Abstract
The food-based approaches are considered important sustainable strategies for preventing iron deficiency. The success of a food fortification program depends on the choice of food vehicles and the choice of iron fortificants, that is, iron sources. This article discusses iron sources, namely, elemental irons and iron compounds, used as fortificants. Common elemental iron powders such as plain pure iron powders, and common iron compounds such as ferrous sulfate used in food fortifications, are reviewed. The article contains tables that list the food chemical codex requirements and the physical and chemical properties of commercial food-grade elemental irons.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006052
EISBN: 978-1-62708-175-7
Abstract
This article discusses the methods and procedures used to extract, purify, and synthesize tungsten carbide powder, metal, and other refractory carbide/nitride powders used in hard metal production. Selection of powders, additives, equipment, and processes for making ready-to-press hard metal powders is also discussed. The article also provides information on the emerging technologies for tungsten carbide synthesis and binders in hard metal production, such as cobalt, iron, and nickel.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006101
EISBN: 978-1-62708-175-7
Abstract
This article summarizes the general classification, mechanical properties, and applications of ferrous powder metallurgy (PM) materials for parts production. It discusses four principal ferrous PM alloy types: admixed elemental alloys, diffusion alloys, prealloys, and hybrid alloys. The article reviews the benefits and disadvantages as well as the effect of processing on the properties and material microstructure of these alloys. It contains tables that list the mechanical properties of various iron-copper and copper steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006057
EISBN: 978-1-62708-175-7
Abstract
Powder metallurgy (PM) techniques are effective in making magnetically soft components for use in magnetic part applications. This article provides an account of the factors affecting magnetism, permeability, and hysteresis losses. It includes information on the magnetic properties of PM materials that are used in the magnetic part applications, namely, pure iron, phosphorus irons, ferritic stainless steels, 50 nickel-50 iron, and silicon irons. The article describes the factors that affect and optimize magnetic properties. It contains a table that lists the magnetic properties possible in metal injection molding parts. The article also discusses ferromagnetic cores used in alternating current applications and some permanent magnets, such as rare earth-cobalt magnets and neodymium-iron-boron (neo) magnets.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005995
EISBN: 978-1-62708-168-9
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005859
EISBN: 978-1-62708-167-2
Abstract
This article focuses on induction hardening process for heat treating operations specifically designed to result in proper microstructure/property combinations in either localized or in the final parts. It briefly reviews the heat treating basics for conventional heat treating operations of steels with iron-carbon phase and transformation diagrams. The article provides a summary of the important temperatures, definitions, and microstructural constituents associated with heat-treated steels. Basic transformation characteristics of heat-treated steels are reviewed. The article also discusses the various aspects of steel heat treatment by induction processing, and concludes with a description of steel alloys for induction processing.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005653
EISBN: 978-1-62708-198-6
Abstract
This article reviews the corrosion interactions between biomedical alloys, in particular iron-base, titanium-base, and cobalt-base alloys, in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. It discusses the nature of these metal surfaces and their propensity for corrosion reactions when combined with similar or different alloys in complex restrictive environments within the human body and under loading conditions. The article describes the factors that influence mechanically assisted crevice corrosion. It reviews the tests developed to investigate the aspects of mechanically assisted corrosion of metallic biomaterials: the scratch test and the in vitro fretting corrosion test.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005442
EISBN: 978-1-62708-196-2
Abstract
This article contains a table that lists the density of metals and alloys. It presents information on aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc, an their respective alloys. Information on wrought alloys, permanent magnet materials, precious metals, and rare earth metals is also listed.
1