Skip Nav Destination
Close Modal
By
James R. Ciulik, John A. Shields, Jr., Prabhat Kumar, Todd Leonhardt, John L. Johnson
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Rhenium
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006255
EISBN: 978-1-62708-169-6
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006198
EISBN: 978-1-62708-163-4
Abstract
This article is a compilation of binary alloy phase diagrams for which rhenium (Re) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006133
EISBN: 978-1-62708-175-7
Abstract
Refractory metals are typically processed from powders into ingots that are subsequently swaged into round bars or rolled into plates. Secondary operations are required to fabricate more complex refractory metal components. This article discusses two such secondary operations, namely, machining and joining processes for tungsten, tungsten heavy alloys, molybdenum, tantalum, niobium, and rhenium components. It describes the various types of metal joining processes, including mechanical fastening, brazing, and welding.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006123
EISBN: 978-1-62708-175-7
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003777
EISBN: 978-1-62708-177-1
Abstract
This article describes various procedures used in the metallographic preparation of niobium, tantalum, molybdenum, and tungsten alloys. It provides information on sectioning, grinding, mounting, polishing, and electrolytic etching as well as alternate procedures that have been used on refractory metals. The article presents and analyzes several micrographs, provides etchant formulas for various materials, and discusses the unique characteristics of rhenium and its alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001426
EISBN: 978-1-62708-173-3
Abstract
This article discusses special metallurgical considerations during the fusion welding of refractory metal alloys. These considerations are: microstructure, interstitial impurities, and welding conditions that are considered during the fusion welding of refractory metal alloys, including tantalum, niobium, rhenium, molybdenum, and tungsten. Refractory metal alloys are discussed in the order of decreasing weldability: tantalum, niobium, rhenium, molybdenum, and tungsten.