Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Chlorine
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006155
EISBN: 978-1-62708-163-4
Abstract
This article is a compilation of binary alloy phase diagrams for which chlorine (Cl) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004183
EISBN: 978-1-62708-184-9
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004184
EISBN: 978-1-62708-184-9
Abstract
True alkaline chemicals include caustic soda or sodium hydroxide (NaOH), caustic potash or potassium hydroxide (KOH), and soda ash or sodium carbonate (Na2CO3). This article reviews alkaline chemicals and provides a basis for a general discussion on various alkaline exposures. It describes the corrosion effects of caustic soda on aluminum and aluminum alloys, iron and steel, carbon and low-alloy steels, stainless steels, high-performance austenitic alloys, nickel and nickel alloys, copper and copper alloys, titanium and titanium alloys, and zirconium and zirconium alloys. The article discusses the corrosion effects of caustic soda on nonmetallic materials: plastics, thermoplastics, thermosetting resin materials, carbon and graphite, and ceramics. It concludes with information on the effects of contamination of and by caustic and of admixtures of caustic with other chemicals, including chlorates, chlorides, chlorine/hypochlorite, mercury, sulfur, and iron.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004181
EISBN: 978-1-62708-184-9
Abstract
Hydrochloric acid (HCl) may contain traces of impurities that will change the aggressiveness of the solution. This article discusses the effects of impurities such as fluorides, ferric salts, cupric salts, chlorine, and organic solvents, in HCl. It describes the corrosion resistance of various metals and alloys in HCl, including carbon and alloy steels, austenitic stainless steels, standard ferritic stainless steels, nickel and nickel alloys, copper and copper alloys, corrosion-resistant cast iron, zirconium, titanium and titanium alloys, tantalum and its alloys, and noble metals. The article illustrates the effect of HCl on nonmetallic materials such as natural rubber, neoprene, thermoplastics, and reinforced thermoset plastics. It also tabulates the corrosion of various metals in dry hydrogen chloride.