Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Beryllium
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006149
EISBN: 978-1-62708-163-4
Abstract
This article is a compilation of binary alloy phase diagrams for which beryllium (Be) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
Abstract
The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon, nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low-pressure die casting. The article provides information on the types of copper castings and tabulates the nominal chemical composition and mechanical properties of several cast alloys.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005142
EISBN: 978-1-62708-186-3
Abstract
This article describes the effect of temperature, composition, strain rate, and fabrication history on the results obtained in the forming of beryllium as well as the safety measures required. It provides information on the equipment, tooling, dies, and workpieces used for forming beryllium. The article discusses the role of lubrication, blank development, tool designs, and strain rates, in deep drawing. It also provides information on the tooling and applications of three-roll bending, stretch forming, and spinning.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
Abstract
This article describes the four major conditions that can cause beryllium to corrode in air. These include beryllium carbide particles exposed at the surface; surface contaminated with halide, sulfate, or nitrate ions; surface contaminated with other electrolyte fluids; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled elements and major impurities are tabulated. The article discusses the in-process problems and procedures that are common but avoidable when processing beryllium and aluminum-beryllium composites. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical conversion coatings, anodized coatings, plated coatings, organic coatings, and plasma-sprayed coatings.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003770
EISBN: 978-1-62708-177-1
Abstract
The two major types of beryllium-containing alloys are copper-berylliums and nickel-berylliums. The most widely used beryllium-containing alloys are wrought copper-berylliums, which provide good strength while retaining useful levels of electrical and thermal conductivity. This article provides information on the specimen preparation procedures, macroexamination, microexamination, and microstructures of beryllium, copper-beryllium alloys, as well as nickel-beryllium alloys. It also discusses health and safety measures associated with the specimen preparation of beryllium and beryllium-containing alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003165
EISBN: 978-1-62708-199-3
Abstract
Beryllium possesses an unusual combination of physical and mechanical properties, suiting it for specialized applications where its relatively high cost can be justified. It has very low density, a moderately high melting point, high elastic modulus, and good electrical and thermal conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when handling beryllium.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
Abstract
This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available by its particular composition and the proper choice of processing method. The article describes the composition, designation system, properties, and processing method of these metals and alloys. It discusses the effect of alloying elements in these alloys. The article explains microstructure/property relationships that are used to make specific properties available to the designers of structural applications. It provides examples of phase diagrams that illustrate eutectic and peritectic reactions.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001444
EISBN: 978-1-62708-173-3
Abstract
Electron-beam welding (EBW) can produce deep, narrow, and almost parallel-sided welds with low total heat input and relatively narrow heat-affected zones in a wide variety of common and exotic metals. This article discusses the joint configurations and shrinkage stresses encountered in various joint designs for electron-beam welding, as well as special joints and welds including multiple-pass welds, tangent-tube welds, three-piece welds, and multiple-tier welds. It provides a comparison of medium vacuum EBW with high-vacuum EBW. Scanning is a method of checking the run-out between the beam spot and the joint to be welded. The article describes various scanning techniques for welding dissimilar metals and provides information on the application of electron-beam wire-feed process for repairs. It concludes with a discussion on EBW of heat-resistant alloys, refractory metals, aluminum alloys, titanium alloys, copper and copper alloys, magnesium alloys, and beryllium.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001086
EISBN: 978-1-62708-162-7
Abstract
Beryllium is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components, precision instruments, and specialized aerospace applications. Almost all of the beryllium in use is a powder metallurgy (P/M) product. Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002191
EISBN: 978-1-62708-188-7
Abstract
This article discusses the properties of beryllium metals that require special attention when machining. It provides information on the considerations of S65 and selects 65 beryllium materials that are used for conducting tool wear studies and surface damage studies. The article highlights some of the precautions to be followed while machining beryllium metals. Information on the cutting oils, cutting tools, and speeds and feeds used in turning the beryllium are also provided. The article describes the chemical milling and photochemical machining methods that are used for etching beryllium components.