Skip Nav Destination
Close Modal
By
Małgorzata Ziomek-Moroz
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Silver
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Ag (Silver) Binary Alloy Phase Diagrams
Available to PurchaseBook: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006143
EISBN: 978-1-62708-163-4
Abstract
This article is a compilation of binary alloy phase diagrams for which silver (Ag) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Ag (Silver) Ternary Alloy Phase Diagrams
Available to PurchaseBook: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006232
EISBN: 978-1-62708-163-4
Abstract
This article is a compilation of ternary alloy phase diagrams for which silver (Ag) is the first-named element in the ternary system. The diagrams are presented with element compositions in weight percent. The article includes 16 phase diagrams: Ag-Au-Cu liquidus projection; Ag-Au-Cu isothermal section at 850 °C; Ag-Au-Cu isothermal section at 950 °C; Ag-Au-Cu isothermal section at 775 °C; Ag-Au-Cu isothermal section at 300 °C; Ag-Cd-Cu isothermal section at 600 °C; Ag-Cd-Cu liquidus projection; Ag-Cd-Cu isothermal section at 500 °C; Ag-Cd-Cu isothermal section at 300 °C; Ag-Cd-Zn isothermal section at 600 °C; Ag-Cd-Zn liquidus projection; Ag-Cd-Zn isothermal section at 400 °C; Ag-Cd-Zn isothermal section at 200 °C; Ag-Cu-Zn isothermal section at 600 °C; Ag-Cu-Zn liquidus projection; and Ag-Cu-Zn isothermal section at 350 °C.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003829
EISBN: 978-1-62708-183-2
Abstract
This article characterizes the corrosion resistance of precious metals, namely, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold. It provides a discussion on the general fabricability; atomic, structural, physical, and mechanical properties; oxidation and corrosion resistance; and corrosion applications of these precious metals. The article also tabulates the corrosion rates of these precious metals in corrosive environment, namely, acids, salts, and halogens.
Book Chapter
Introduction to Corrosion for Constructive Purposes
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003604
EISBN: 978-1-62708-182-5
Abstract
Principles of metallic corrosion play a fundamental role in developing industrial processes that employ corrosion for constructive purposes. This article examines the changes in kinetics that occur with differentially small potential changes around the equilibrium electrode potentials of two reversible electrodes, such as copper and silver electrodes, in an electrochemical system. It provides a schematic illustration of a reversible cell with copper and silver electrodes to determine a reversible cell potential between the electrodes. An electrode becomes irreversible when the electrode reactions are displaced from equilibrium and the electrode potential is no longer at the equilibrium potential. The article describes irreversible cell potential by using galvanic cells, electrolytic cells, and corrosion cells.
Book Chapter
Precious Metals and Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003150
EISBN: 978-1-62708-199-3
Abstract
Precious metals include gold, silver, and six platinum-group metals, namely, platinum, palladium, ruthenium, rhodium, osmium, and iridium. This article focuses on the consumption, trade practices, properties, product forms, and applications of these metals and their alloys.