Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Tellurium
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Te (Tellurium) Binary Alloy Phase Diagrams
Available to PurchaseBook: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006211
EISBN: 978-1-62708-163-4
Abstract
This article is a compilation of binary alloy phase diagrams for which tellurium (Te) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002180
EISBN: 978-1-62708-188-7
Abstract
The machinability of stainless steels varies from low to very high, depending on the final choice of the alloy. This article discusses general material and machining characteristics of stainless steel. It briefly describes the classes of stainless steel, such as ferritic, martensitic, austenitic, duplex, and precipitation-hardenable alloys. The article examines the role of additives, such as sulfur, selenium, tellurium, lead, bismuth, and certain oxides, in improving machining performance. It provides ways to minimize difficulties involved in the traditional machining of stainless steels. The article describes turning, drilling, tapping, milling, broaching, reaming, and grinding operations on stainless steel. It concludes with information on some of the nontraditional machining techniques, including abrasive jet machining, abrasive waterjet machining electrochemical machining, electron beam machining, and plasma arc machining.