Skip Nav Destination
Close Modal
By
Mohan Sai Kiran Kumar Yadav Nartu, Shashank Sharma, Srinivas Aditya Mantri, Sameehan S. Joshi, Mangesh V. Pantawane ...
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 723
Nonferrous metals and alloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 12A
Publisher: ASM International
Published: 30 June 2025
DOI: 10.31399/asm.hb.v12a.9781627085007
EISBN: 978-1-62708-500-7
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006841
EISBN: 978-1-62708-387-4
Abstract
This article discusses fractures and cracks due to ancient artifact weaknesses. It provides several case studies to aid the appreciation of fractography as a diagnostic technique and to understand the importance of cracking. These case histories concern ancient gold and silver alloys, bronzes, and wrought irons. The article considers the applicabilities of fractography, metallography, and chemical analyses in answering archaeological and archaeometallurgical questions. The article also discusses the restoration and conservation of corroded and embrittled artifacts, including the use of coatings.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007025
EISBN: 978-1-62708-387-4
Abstract
Fracture of aluminum alloys can occur due to several failure types and/or fracture morphologies, including overload, intergranular fracture, fatigue, corrosion, and mixed-mode fracture. This article provides a detailed discussion on these failure types and/or fracture morphologies. It also presents the differences between wrought and cast aluminum products.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007026
EISBN: 978-1-62708-387-4
Abstract
This article aims to summarize the work on cryogenic strength and toughness and to present the fractography of aluminum alloys. It presents case studies on the importance of understanding the fractography of aluminum alloys and the role of microstructure in the appearance of fractographic features, with variables comprised of in-plane/through-thickness anisotropy, test temperature, heat treatment condition, and the effect of welding.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007031
EISBN: 978-1-62708-387-4
Abstract
This article focuses on the following common fracture mechanisms observed in copper alloys: dimple overload, corrosion-related fractures such as corrosion fatigue and stress-corrosion cracking, and intergranular fracture. The effects of loading conditions and temperature on copper and copper alloys are discussed.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007034
EISBN: 978-1-62708-387-4
Abstract
This article presents a detailed discussion on the microstructures, physical metallurgy, classification, deformation behavior, and fracture modes of titanium alloys. It illustrates the effect of microstructure and texture on the fracture topography and fracture behavior of titanium alloys with a variety of relevant examples.
Book
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.9781627083874
EISBN: 978-1-62708-387-4
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006957
EISBN: 978-1-62708-439-0
Abstract
High-volume additive manufacturing (AM) for structural automotive applications, along the lines of economically viable technologies such as powder metallurgy, castings, and stampings, remains a lofty goal that must be realized to obtain the well-known advantages of AM. This article presents two key opportunities for AM related to automotive applications, specifically within the realm of metal laser powder-bed fusion: alloys and product designs capable of high throughput. The article also presents the general methodology of alloy development for automotive AM. It provides examples of unique designs for reciprocating components in elevated-temperature applications that are also exposed to demanding tribological conditions. The article also discusses the future of AM for automotive applications.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006973
EISBN: 978-1-62708-439-0
Abstract
Additive manufacturing (AM) is a highly desired layer-by-layer fabrication process capable of creating near-net-shaped three-dimensional components for a wide range of industries, such as the automotive and aerospace industries. This article focuses on aluminum, titanium, and stainless steel alloys that are commonly used or highly desired for use with AM due to their widespread applicability and favorable mechanical properties. It presents an overview of two of the major AM processes: powder-bed and powder-fed. The article discusses processability using AM. It also provides an overview of material microstructures, defects, and the impact on mechanical behaviors.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006970
EISBN: 978-1-62708-439-0
Abstract
Additive manufacturing (AM) has gained increased significance and has been adopted across many industries for various applications. Specific net-shape AM fabrication methods, such as laser powder-bed fusion (LPBF), have matured significantly, leading to aerospace sector R&D focused on the feasibility of using flagship alloys to manufacture complex components. This article presents one example of an aluminum alloy design tailored for laser powder-bed fusion AM. It discusses the integrated computational materials engineering design approach. The article also presents the design for high-strength, high-temperature aluminum alloys.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006985
EISBN: 978-1-62708-439-0
Abstract
Fatigue failure is a critical performance metric for additively manufactured (AM) metal parts, especially those intended for safety-critical structural applications (i.e., applications where part failure causes system failure and injury to users). This article discusses some of the common defects that occur in laser powder bed fusion (L-PBF) components, mitigation strategies, and their impact on fatigue failure. It summarizes the fatigue properties of three commonly studied structural alloys, namely aluminum alloy, titanium alloy, and nickel-base superalloy.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.9781627084390
EISBN: 978-1-62708-439-0
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006857
EISBN: 978-1-62708-392-8
Abstract
Additive manufacturing (AM), or three-dimensional (3D) printing, has been widely used for biomedical devices due to its higher freedom of design and its capability for mass customization. Additive manufacturing can be broadly classified into seven categories: binder jetting, directed energy deposition (DED), material extrusion, material jetting, powder-bed fusion (PBF), sheet lamination, and vat photopolymerization. Due to their capability for manufacturing high-quality parts that are fully dense, PBF and DED are the most widely used groups of AM techniques in processing metals directly. In this article, the processing of titanium and its alloys by PBF and DED is described, with a specific focus on their use in biomedical devices. The article then covers the density and mechanical properties of both commercially pure titanium and titanium-aluminum-vanadium alloy. Lastly, the challenges and potential of using new titanium-base materials are discussed.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006885
EISBN: 978-1-62708-392-8
Abstract
This article focuses on the directed-energy deposition (DED) additive manufacturing (AM) technique of biomedical alloys. First, it provides an overview of the DED process. This is followed by a section describing the design and development of the multiphysics computational modeling of the layer-by-layer fusion-based DED process. A brief overview of the primary governing equations, boundary conditions, and numerical methods prescribed for modeling laser-based metal AM is then presented. Next, the article discusses fundamental concepts related to laser surface melting and laser-assisted bioceramic coatings/composites on implant surfaces, with particular examples related to biomedical magnesium and titanium alloys. It then provides a review of the processes involved in DED of biomedical stainless steels, Co-Cr-Mo alloys, and biomedical titanium alloys. Further, the article covers novel applications of DED for titanium-base biomedical implants. It concludes with a section on the forecast of DED in biomedical applications.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006907
EISBN: 978-1-62708-392-8
Abstract
Additive manufacturing (AM) techniques include powder-bed fusion (PBF), directed-energy deposition, binder jetting (BJ), extrusion-based desktop, vat photopolymerization, material jetting, and sheet lamination. The development of suitable powders for AM is a challenging task because of critical design parameters including chemical composition, flowability of powders, and melt surface tension. This article explains the fabrication methods of metal and novel alloy powders for medical applications. The development of zirconium alloy powder for laser-PBF is introduced as a case study.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006889
EISBN: 978-1-62708-392-8
Abstract
This article discusses some of the additive manufacturing (AM) based fabrication of alloys and their respective mechanical, electrochemical, and in vivo performance. Firstly, it briefly discusses the three AM techniques that are most commonly used in the fabrication of metallic biomedical-based devices: binder jetting, powder-bed fusion, and directed-energy deposition. The article then characterizes the electrochemical properties of additive-manufactured/processed cobalt-chromium alloys. This is followed by sections providing an evaluation of the biological response to CoCr alloys in terms of the material and 3D printing fabrication. Discussion on the biological response as a function of direct cellular activity on the surface of CoCr alloys in static conditions (in vitro), in dynamic physiological conditions (in vivo), and in computer-simulated conditions (in silico) are further discussed in detail. Finally, the article provides information on the qualification and certification of AM-processed medical devices.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
Abstract
Additive manufacturing, or three-dimensional printing technologies, for biomedical applications is rather different from other engineering components, particularly for biomedical implants that are intended to be used within the human body. This article contains two sections: "Design and Manufacturing Considerations of 3D-Printed, Commercially Pure Titanium and Titanium Alloy-Based Orthopedic Implants" and "Device Testing Considerations Following FDA Guidance" for additive-manufactured medical devices. These are further subdivided into five major focus areas: materials; design, printing, printing characteristics and parameters as well as postprinting validation; removal of the many manufacturing material residues and sterilization; physical, chemical, and mechanical assessments of the final devices; and biological considerations of all the final devices including biocompatibility.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
1