Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Hybrid composites
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005339
EISBN: 978-1-62708-187-0
Abstract
Metal matrix composites (MMCs) can be synthesized by vapor phase, liquid phase, or solid phase processes. This article emphasizes the liquid phase processing where solid reinforcements are incorporated in the molten metal or alloy melt that is allowed to solidify to form a composite. It illustrates the three broad categories of MMCs depending on the aspect ratio of the reinforcing phase. The categories include continuous fiber-reinforced composites, discontinuous or short fiber-reinforced composites, and particle-reinforced composites. The article discusses the two main classes of solidification processing of composites, namely, stir casting and melt infiltration. It describes the effects of reinforcement present in the liquid alloy on solidification. The article examines the automotive, space, and electronic packaging applications of MMCs. It concludes with information on the development of select cast MMCs.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009074
EISBN: 978-1-62708-177-1
Abstract
This article focuses on the sample preparation methods for titanium honeycomb composites, boron fiber composites, and titanium/polymeric composite hybrids. These include mounting, sectioning, grinding, and polishing. The article also provides information on the sample preparation of unstaged and staged prepreg materials for optical analysis.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003356
EISBN: 978-1-62708-195-5
Abstract
This article describes the synthesis, manufacturing, and properties of both the neat soy-based resins and the glass, flax, and hemp composites. A tabulation of the fatty-acid distribution in various plant oils is provided. The article discusses synthetic pathways for triglyceride-based monomers and provides a discussion on acrylated epoxidized soybean oils (AESO), maleinized soyoil monoglyceride (SOMG/MA), and maleinized hydroxylated oil (HO/MA). The polymer properties of the AESO, SOMG/MA, and HO/MA are also discussed. The article explains the ballistic impact resistance of soy resin composites and concludes with a discussion on biodegradable composites.