Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 27
Tribological testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
Abstract
Tribology is the study of contacting materials in relative motion and more specifically the study of friction, wear, and lubrication. This article discusses the classification and the mechanisms of friction, wear, and lubrication of polymers. It describes the tribological applications of polymers and the tribometers and instrumentation used to measure the tribological properties of polymers. The article discusses the processes involved in calculating the wear rate of polymers and the methods of characterization of the sliding interface. It provides information on the pressure and velocity limit of polymer composites and polymer testing best practices.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006372
EISBN: 978-1-62708-192-4
Abstract
Stainless steels are characterized as having relatively poor wear resistance and tribological properties, but they are often required for a particular application because of their corrosion resistance. This article describes the classification of stainless steels and wear. Stainless steels have been classified by microstructure and are categorized as austenitic, martensitic, ferritic, or duplex. The main categories of wear are related to abrasion, erosion, adhesive wear, and surface fatigue. The article presents a list that proposes the alloy family that could be the optimal selection for a particular wear mode. The corrosion modes include dry sliding, tribocorrosion, erosion, erosion-corrosion, cavitation, dry erosion, erosion-oxidation, galling and fretting.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006361
EISBN: 978-1-62708-192-4
Abstract
This article describes the numerous techniques used to measure friction. It provides a brief description of the historical development of friction testing. The article discusses the tests and equipment available for friction testing. It explains the procedural considerations that should be addressed to ensure that valid data are derived from a friction test. The article presents definitions of terms commonly used in tribology such as static friction, kinetic coefficient of friction, stick-slip behavior, and lubricated friction. It provides information on the precautions that must be taken to ensure valid test results. The article also describes how to report data and how to analyze these data.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006383
EISBN: 978-1-62708-192-4
Abstract
This article focuses on different aspects of wear particle analysis. It discusses the different wear regimes in the wear rate versus time (bathtub) curve. The article explains the essence of condition monitoring and how to properly sample lubricants for condition monitoring. It also discusses in-service lubricant analysis for condition monitoring, focusing on the spectrometric oil analysis program. The article describes the characteristics of wear particles and analytical techniques for characterizing them. It also describes the characteristics of different types of wear particles and the mechanisms by which they are generated. The article concludes with a summary of the major applications of wear particle analysis.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006386
EISBN: 978-1-62708-192-4
Abstract
This article provides a detailed literature overview of wear in agriculture equipment and implements. It introduces them with specific description of the wear situation due to ground or crop engagement. The article provides information on operational parameters, component design, and selection of implements. It illustrates their quantitative correlations to wear. The article details wear mitigation strategies for metallic components, such as materials selection, coating, design, and processing. It reviews wear testing approaches for equipment and implements. The article discusses the role of modeling and simulation for understanding and managing wear.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006392
EISBN: 978-1-62708-192-4
Abstract
This article discusses the classification of wear based on the presence or absence of effective lubricants, namely, lubricated and nonlubricated wear. Variations in ambient temperature, atmosphere, load, and sliding speed, as well as variations in material bulk composition, microstructure, surface treatment, and surface finish of steel are also considered. The article discusses the types, wear testing, wear evaluation, and hardness evaluation of abrasive wear. It describes the selection criteria of steels for wear resistance. The article also describes the importance of hardness and microstructure as factors in resistance to wear. It provides a discussion on the resistance of various materials to wear in specific applications. The wear resistance of austenitic manganese steels is also discussed. The article discusses the applications of phosphate coatings, wear-resistant coatings, and ion implantation. It concludes with information on interaction of wear and corrosion.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006402
EISBN: 978-1-62708-192-4
Abstract
The influence of friction and wear on the function and structure of tribological systems is determined by various types of tribological tests. This article introduces the general categories of tribological testing and describes the basic objectives of testing. It reviews the results of tribological tests, where the system-dependent characteristics of friction and wear data can be expressed in different forms, such as tribographs, transition diagrams, and tribomaps. A summary of various methods of surface analysis is presented in a table. The article discusses the relationship between wear and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005730
EISBN: 978-1-62708-171-9
Abstract
This article describes the two commonly used standardized tests for determining the mechanical properties of thermal spray coatings: hardness testing and tensile adhesion testing. It discusses the destructive and non-destructive methods of residual-stress measurement. Electrochemical testing methodologies include two distinctly different methods: direct and alternating current impedance techniques for assessing the corrosion resistance of coating attributes. The article also reviews the testing methods for determining thermomechanical and environmental stability of thermal barrier coatings. It discusses the wear testing methodologies that are standardized by ASTM, including the pin-on-disk, block-on-ring, dry sand/rubber wheel, erosion, metallographic apparatus abrasion, fretting wear, cavitation, reciprocating ball-on-flat, impact, and rolling contact fatigue test. The article concludes with a discussion on the methods of testing abradability and erosion resistance in abradable coatings.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
Abstract
Total joint replacement in orthopedic surgery can be achieved by excision, interposition, and replacement arthroplasty. This article details the most common materials used in total replacement synovial joints: metals, ceramics, and ultrahigh molecular weight polyethylene (UHMWPE). The principal physical properties and tribological characteristics of these materials are summarized. The article discusses pin-on-disk experiments and pin-on-plate experiments for determining friction and wear characteristics. It explains the use of various types of joint simulators, such as hip joint simulators and knee joint simulators, to evaluate the performance of engineering tribological components in machine simulators. The article concludes with a section on the in vivo assessment of total joint replacement performance.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005668
EISBN: 978-1-62708-198-6
Abstract
This article provides an overview of the fundamentals of tribology. It describes the advantages, disadvantages, and applications of the pin-on-disk method, which is the most commonly used configuration for testing biomaterials and for the reproducible measurement of friction and wear. The article illustrates a practical tribocorrosion setup that allows a user to perform wear tests in corrosive environments under well-defined electrochemical conditions and at controlled temperature. It explains the effect of changes in electrical contact resistance on tribological mode. The article discusses various in vivo environmental conditions in tribological tests. Some typical examples of biomaterials testing are also provided.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005149
EISBN: 978-1-62708-186-3
Abstract
Sheet metal forming operations are so diverse in type, extent, and rate that no single test provides an accurate indication of the formability of a material in all situations. This article presents an overview of types of forming, formability problems, and principal methods of measuring deformation. It reviews the effect of materials properties and temperature on formability. The article provides a detailed discussion on the two major categories of formability tests such as the intrinsic test, including uniaxial tension testing, plane-strain tension testing, biaxial stretch testing, and simulative tests such as bending tests, stretching tests, the Ohio State University test, the drawing test, and stretch-drawing tests. It extends the correlation between simulative tests and materials properties using forming limit diagrams and circle grid analysis, and discusses the improvements to the forming limit diagram technology.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003629
EISBN: 978-1-62708-182-5
Abstract
This article describes the methods of wear measurements and a model of corrosive wear in mill atmospheres. It explains the polarization curves of pyrrhotite and high-carbon low-alloy steel in a quartzite slurry with examples. The surfaces of pyrrhotite in contact with mild steel or stainless steel affected by galvanic interaction are discussed. The article contains a table that lists the results of laboratory marked ball wear tests for three types of steel balls in wet grinding of magnetic taconite. It also provides information on the mechanism of electrochemical interaction and relative significance of corrosion and abrasion in wear. Galvanic interactions in multielectrode systems are reviewed. The article presents a case history on the material selection for grinding balls to minimize corrosion loss and the adverse effect on flotation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003279
EISBN: 978-1-62708-176-4
Abstract
This article discusses the tests designed specifically to evaluate the adhesion, friction, and wear behavior of various material systems. It tabulates the characteristics of common types of wear and mechanical surface damage. The article also considers the displaying and analyzing of adhesion, friction, and wear test data. It concludes with a description of devices used for testing adhesion, friction, and wear.
1