Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Nuclear magnetic resonance spectroscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
Abstract
This article presents tools, techniques, and procedures that engineers and material scientists can use to investigate plastic part failures. It also provides a brief survey of polymer systems and the key properties that need to be measured during failure analysis. It describes the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing crystal phases and structures in solid materials.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006650
EISBN: 978-1-62708-213-6
Abstract
This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin descriptions and line narrowing and spectral resolution and describing the impact of magnetic field on nuclear spins and the factors determining resonance frequency. This is followed by a description of various systems and equipment necessary for NMR spectroscopy. A discussion on general sampling for solid-state NMR, sample-spinning requirements, and extraneous signals is then included. Various factors pertinent to accurate calibration of the NMR spectrum are also described. The article provides information on some of the parameters both beneficial and problematic for processing NMR data. It ends with a description of the applications of NMR in glass science and ceramics.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001752
EISBN: 978-1-62708-178-8
Abstract
Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles of nuclear magnetic resonance with emphasis on nuclei properties, the basic equation of nuclear magnetic resonance, the classical theory of nuclear magnetization, line broadening, and measurement sensitivity. It describes the pulse-echo method for observing NMR. The article provides useful information on ferromagnetic nuclear resonance and nuclear quadrupole resonance, and illustrates the experimental arrangement of NMR with a block diagram. It also presents several application examples.