Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Book Series
Date
Availability
1-2 of 2
Mossbauer spectroscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006646
EISBN: 978-1-62708-213-6
Abstract
The Mossbauer effect (ME) is a spectroscopic method for observing nuclear gamma-ray fluorescence using the recoil-free transitions of a nucleus embedded in a solid lattice. This article provides an overview of the fundamental principles of ME, covering recoil-free fraction, absorption, selection rules, gamma-ray polarization, isomer shift, quadrupole interaction, and magnetic interaction. Experimental arrangement for obtaining ME spectra is described and several examples of the applications of ME are presented. The article contains tables listing some properties of Mossbauer transitions and principal methods used for producing ME sources.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001753
EISBN: 978-1-62708-178-8
Abstract
The Mossbauer effect (ME) is a spectroscopic method for observing nuclear gamma-ray fluorescence based on recoil-free transitions in a nucleus embedded in a solid lattice. This article provides an overview of the fundamental principles of ME and related concepts such as recoil-free fraction, absorption cross section, gamma-ray polarization, isomer shift, and quadrupole and magnetic interactions. It illustrates the experimental arrangement for obtaining ME spectra and presents several application examples.