Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 36
Statistical quality control
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006803
EISBN: 978-1-62708-329-4
Abstract
This article provides an outline of the issues to consider in performing a probabilistic life assessment. It begins with an historical background and introduces the most common methods. The article then describes those methods covering subjects such as the required random variable definitions, how uncertainty is quantified, and input for the associated random variables, as well as the characterization of the response uncertainty. Next, it focuses on specific and generic uncertainty propagation techniques: first- and second-order reliability methods, the response surface method, and the most frequently used simulation methods, standard Monte Carlo sampling, Latin hypercube sampling, and discrete probability distribution sampling. Further, the article discusses methods developed to analyze the results of probabilistic methods and covers the use of epistemic and aleatory sampling as well as several statistical techniques. Finally, it illustrates some of the techniques with application problems for which probabilistic analysis is an essential element.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006368
EISBN: 978-1-62708-192-4
Abstract
Vibroacoustic analysis of mechanical systems has an important role in the engineering discipline. This can be used as a monitoring tool to obtain insights about the condition of a system, identify its probable defects, and determine the time window that the maintenance should happen. This article introduces the basics of signal processing in time, frequency, and time-frequency domains. It focuses on statistical analysis of the time-domain data. Various measures of data distribution and variability are pointed out. Important signal-processing functions in the frequency domain are presented and explained with examples. The article discusses and clarifies the benefits of time-frequency domain based on short-time Fourier transform with some practical applications. The article presents the most frequently used statistical functions. It concludes with information on some real-world applications of vibroacoustic analysis.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006402
EISBN: 978-1-62708-192-4
Abstract
The influence of friction and wear on the function and structure of tribological systems is determined by various types of tribological tests. This article introduces the general categories of tribological testing and describes the basic objectives of testing. It reviews the results of tribological tests, where the system-dependent characteristics of friction and wear data can be expressed in different forms, such as tribographs, transition diagrams, and tribomaps. A summary of various methods of surface analysis is presented in a table. The article discusses the relationship between wear and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006334
EISBN: 978-1-62708-179-5
Abstract
This article describes different methods by which the composition of cast iron can be analyzed. It provides particular emphasis on the methods for evaluating the graphitization potential of a melt with prescribed limits on carbon, silicon, and alloying elements. The article discusses the effect of cooling rate on the graphitization of a given composition by chill and wedge tests. Thermal analysis of cooling curves gives excellent information about the solidification and subsequent cooling of cast iron alloys. The article presents some applications of the cooling curve analysis and explains the evaluation of carbon-silicon contents, graphite shape, graphite nucleation, and contraction-expansion balance. It illustrates the use of an immersion steel sampling device for compacted graphite iron production and provides information on the ferrite-pearlite ratio in ductile iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006342
EISBN: 978-1-62708-179-5
Abstract
The metallographic specimen preparation process for microstructural investigations of cast iron specimens usually consists of five stages: sampling, cold or hot mounting, grinding, polishing, and etching with a suitable etchant to reveal the microstructure. This article describes the general preparation of metallographic specimens and the methods of macroscopic and microscopic examination. Usually, gray-scale (black-and-white) metallography is sufficient for microstructural analysis of cast irons. The article discusses the use of color metallography of gray irons and ductile irons. It also presents application examples of color metallography.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006030
EISBN: 978-1-62708-172-6
Abstract
This article discusses the occupational health hazards related to industrial protective coating application and removal. It explains the health hazards associated with coating constituents such as lead, cadmium, chromium, arsenic, silica, and asbestos. The article also discusses hazard evaluation, hazard controls, Occupational Safety and Health Administration standards, and industry consensus standards. It concludes with a description of containment systems to prevent environmental exposures from industrial paint removal projects.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006043
EISBN: 978-1-62708-172-6
Abstract
This article discusses the standard conduct of coating failure investigation. As each failure is different, a specific coating failure may require increased emphasis on a given step, or additional work and/or steps may be required. This article covers the following topics: obtaining and analyzing background information, preliminary determination of site conditions, inspection equipment requirements, coating failure site investigation, sampling techniques, sample chain of custody, coordination with the coatings laboratory, report preparation, and sample retention.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006115
EISBN: 978-1-62708-175-7
Abstract
This article summarizes sampling of powders, which includes the sampling of stored material and flowing streams, sample reduction and evaluation, and weight of sample required. It also summarizes the classification of powders. Classifiers are divided into two categories: counterflow equilibrium and crossflow separation. Classification methods are used to exclude certain powder sizes from a powder distribution and to obtain particular powder distributions. For example, sieving methods are used to obtain particular powder distributions and to obtain narrow size ranges of a powder. The article summarizes the sieving methods for powders. The sieving methods include hand sieving, machine sieving, manual wet sieving, air jet sieving, sonic sifter, wet sieving by machine, the Seishin robot sifter, automated systems, and ultrasonic machine sieving. The article outlines the sieve types and the process variables of the sieving process. An appendix reviews dispersion of powders in liquids.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005852
EISBN: 978-1-62708-167-2
Abstract
The basic elements of control design are safety, process control, process verification, machine control, productivity, repeatability, and ease of setup. Effective systems of quality control/quality assurance are essential for heat treating practices. This article provides information on process control modes, as well as on process signatures of some items that require control, monitoring, verifying, and logging methods. It provides information on programmable logic controllers that have become efficient in machine control and monitoring. The article describes possible noise issues, National Electric Code clearance requirements, monitoring requirements, and machine accuracy that need to be considered when designing induction equipment.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005346
EISBN: 978-1-62708-187-0
Abstract
The basic quality analysis tools are cause-and-effect diagrams, check sheets, control charts, histograms, Pareto charts, scatter diagrams, and run charts. This article reviews how basic quality analysis tools are built upon to become a more advanced set of quality tools. It describes the advanced quality tools: advanced product quality planning, failure mode and effects analysis, control planning, measurement systems analysis, lean tools, statistical process control, production viability and tryout, and Six Sigma.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005152
EISBN: 978-1-62708-186-3
Abstract
Statistics are extremely important tools in the operation of press shops, providing numerical process analysis capabilities. The most common use of statistics in the press shop is statistical process control (SPC) that uses statistical techniques such as control charts to analyze a process or its output to enable appropriate actions to be taken to achieve and maintain a state of statistical control. This article discusses the role of statistics in sheet metal forming operations, both in terms of SPC techniques, such as control charting, statistical deformation control, and experimental design, including single-variable studies, multivariable studies, and Taguchi experiments.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003757
EISBN: 978-1-62708-177-1
Abstract
This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied to microscopy of materials. The article describes the basic concepts of sampling and resolution and quantization of light microscopy, scanning electron microscopy, and transmission electron microscopy. It discusses the acquisition of a digital image that accurately represents the sample under observation and output of the image to a printer. The methods used to enhance the digital image and to extract quantitative information are also described. Different types of image segmentation, namely, adaptive segmentation and contour-based segmentation, are reviewed. The article also presents case studies on the application of image processing and analysis to materials characterization.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003708
EISBN: 978-1-62708-182-5
Abstract
A corrosionist refers to a corrosion engineer, a corrosion technician, a corrosion scientist, a chemist, a physicist, an electrical engineer, a mechanical engineer, a coatings or plastics salesperson, a corrosion consultant, or a plant operator. This article presents an overview of statistical inference and addresses the commonly used statistical tools and tests. It describes the science and engineering of materials, including metals, polymers, and ceramics. The article explores the principles of various surface-sensitive techniques and the usefulness and limitations of these techniques. The techniques are divided into those that provide insight into surface topography and surface structure, and those that provide understanding of chemical nature and identity. The article presents a list of web sites and print media addressing corrosion and related topics in five different areas: societies and associations; corrosion standards, specifications, and recommended practices; sources of corrosion information; corrosion databases and data compilations; and other web resources.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003712
EISBN: 978-1-62708-182-5
Abstract
This article presents definitions, equations, and notational conventions that are used widely in statistical analysis. It provides information on a basic framework for the selection of a statistical test. The article outlines the basic elements common to all statistical tests. Illustrations of specific statistical tests and the concept of confidence limits are introduced. The article provides an overview of sampling issues, with guidance on both selecting a sampling method and determining the number of units to sample. One-way analysis of the variance, correlation, and simple regression are also illustrated.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003661
EISBN: 978-1-62708-182-5
Abstract
Pitting is a form of localized corrosion that is often a concern in applications involving passivating metals and alloys in aggressive environments. This article describes the test methods for pitting corrosion. These methods include ASTM G 48, ASTM F 746, ASTM G 61, ASTM G 100, and electrochemical noise measurements. The visual examination, metallographic examination, and nondestructive inspection of pits are discussed. The article reviews the procedures for the use of standard charts, metal penetration, statistical analysis, and loss in mechanical properties to quantify the severity of pitting damage.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003641
EISBN: 978-1-62708-182-5
Abstract
This article details factors that have been used for evaluating the susceptibility of alloys to stress-corrosion cracking. Many considerations impacting the validity and accuracy of information gathered from laboratory testing programs are reviewed. The article highlights the main characteristics of probability distributions, such as normal distribution, log-normal distribution, exponential distribution, Poisson distribution, and extreme-value distribution. It also provides information on the statistical concepts to produce effective test programs.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
1