Skip Nav Destination
Close Modal
By
Robert A. Watson, Bo Jönsson, George A. Fielding, Donald V. Cunningham, C. Dean Starr
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-18 of 18
Service lifetime testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
Abstract
This article describes the general aspects of creep, stress relaxation, and yielding for homogeneous polymers. It then presents creep failure mechanisms in polymers. The article discusses extrapolative methods for the prediction of long-term creep failure in polymer materials. Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric method, one of the most common to describe the material deformation and rupture time, is also discussed.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.9781627081900
EISBN: 978-1-62708-190-0
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004165
EISBN: 978-1-62708-184-9
Abstract
Complete vehicle accelerated corrosion testing on the proving ground is a mandatory testing tool among vehicle manufacturers around the globe. This article focuses on creating some awareness of the difficulty in applying reliable corrosion tests for all corrosion-sensitive automotive systems at once. It describes the various factors for a complete vehicle testing, including wear from road grit, dirt, salt load, elevated temperatures, and mechanical effects such as chafing and fretting. The article discusses the four main test blocks, namely, driving sequence on various proving ground tracks, exposure of the vehicle in one or more ways to road deicing salts, static exposure to forced climatic conditions, and additional elements such as operating the mechanical systems of the vehicle, car washes, and so forth. It concludes with information on the major advantages and drawbacks of a full-service-life test.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004121
EISBN: 978-1-62708-184-9
Abstract
The major benefit of the implementation of the corrosion-control technologies at Army installations is the extension of the service life of buildings and other structures. This article reviews the exposure of military facilities and equipment to a wide variety of environmental conditions, including soils, waters, or atmospheres of varying corrosivity. It presents the case studies illustrating typical examples of the types of corrosion problems found on military installations. The article describes the various corrosion-control technologies used in military facilities. These include protective coatings and linings, cathodic protection, advanced materials selection and design, water treatment, equipment inspection and monitoring, and below-grade moisture mitigation.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004131
EISBN: 978-1-62708-184-9
Abstract
Aging is a process where the structural and/or functional integrity of components will be continuously degraded by exposure to the environmental conditions under which they are operated. This article discusses aging mechanisms in various components of military systems such as structural parts, engines, and subsystems. It describes the aging management processes such as full-scale structural testing and practical life-enhancement methods. The article reviews control and prevention systems such as usage and health monitoring systems necessary to provide effective corrosion maintenance on military systems. Failure prediction techniques, namely, the equivalent pre-crack size approach, life-cycle cost modeling and simulation, and holistic life-prediction methodology are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003650
EISBN: 978-1-62708-182-5
Abstract
Simulated service testing includes exposures of either structural components or test specimens in environments that are representative of many general service situations. This article discusses the selection criteria of test specimens and methods of assessing the corrosion effects. The ASTM International and NACE International standards that are directly or indirectly applicable to simulated service corrosion testing in water are tabulated. The article also describes the effects of variable concentrations of dissolved carbonates, such as calcium, magnesium, and/or sodium, in water on corrosion.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003705
EISBN: 978-1-62708-182-5
Abstract
This article provides a discussion on the principles and terminology of engineering economy and their application to a number of generic corrosion-related problems. It describes the methods of economic analysis that lead to single measure numbers. The article explains the application of the present worth method. Some of the most common methods of depreciation are provided. The article presents the generalized equations that will simplify the solution of a large percentage of engineering economy problems. It also discusses the calculation of the present worth and service life of each material.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003651
EISBN: 978-1-62708-182-5
Abstract
This article describes the test methods for evaluating the durability of a metal in soil. It provides useful information on soil characteristics such as soil electrical resistivity, pH value, and soil texture. Specimen design, preparation, burial, and retrieval techniques are discussed. The type of information sought during soil-induced corrosion evaluation controls the design configuration and the nature of the corrosion measurements. Consideration of these factors during the planning stage helps the corrosion engineer to obtain the maximum amount of information with the minimum number of problems.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003706
EISBN: 978-1-62708-182-5
Abstract
This article discusses corrosion fatigue, its effects on the damage tolerance of aircraft, and its predictive modeling. A conceptual framework is presented that incorporates two distinctive cyclic-based life-prediction philosophies and expands them both to include the time domain in order to consider the effects of corrosion. These philosophies include crack initiation used for safe-life design and crack growth used for damage tolerance. The article presents the methodology for computing the effects of real-time age degradation on an aircraft structure for two different corrosion types: crevice and pitting corrosion. It describes the rationale and techniques needed to apply the age-based structural integrity processes to in-service structures in order to realize the benefits throughout the full structural life cycle.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003649
EISBN: 978-1-62708-182-5
Abstract
Simulated service testing is the most reliable predictor of corrosion behavior that is important for specific objectives. These include materials selection, predicting the probable service life of a product or structure, evaluating new commercial alloys and processes, and calibrating laboratory corrosion tests in short of in-plant tests and actual service experience. This article provides a detailed discussion on the types of atmospheres used in simulated service testing. It describes the specifics of atmospheric-corrosion test that include equipment, test arrangement, and test specimen; factors affecting atmospheric corrosion; and evaluation of exposed atmospheric-corrosion panels. The article concludes with a discussion on the empirical model used for analyzing the atmospheric-corrosion measurements for estimating the service life of the part being evaluated.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003307
EISBN: 978-1-62708-176-4
Abstract
Predicting the service life of structural components involves creep-fatigue crack growth (CFCG) testing under pure creep conditions. This article provides a discussion on the loading condition and the type of ductile and brittle material showing creep behavior. It focuses on a description of the experimental method that should be followed in conducting tests of CFCG with various hold times. The article describes the testing conditions, definitions, and the necessary calculations of various crack-tip parameters considered during static and cyclic loading in time-dependent fracture mechanics. The parameters considered for static loading are C*, C(t), C*(t), C*h, Ct, and Cst(t). For cyclic loading, the parameters are delta Jc and (Ct)avg. An overview of life-prediction models is also provided.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002419
EISBN: 978-1-62708-193-1
Abstract
This article discusses the fracture behavior of silicate glasses, more specifically, soda-lime-silicate glass, borosilicate glass and vitreous silica. It analyzes the testing and calculation of dynamic fatigue and slow-crack-growth for lifetime prediction of glasses. The article illustrates the phenomenon of static fatigue and concludes with a discussion on the role of surface damage in strength and fatigue behavior.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001471
EISBN: 978-1-62708-173-3
Abstract
Weldments exhibit special microstructural features that need to be recognized and understood in order to predict acceptable corrosion service life of welded structures. This article describes some of the general characteristics associated with the corrosion of weldments. It emphasizes the role of macrocompositional and microcompositional variations to bring out differences that need to be realized in comparing corrosion of weldments to that of wrought materials. The article concludes with a discussion on important welding practices used to minimize corrosion in weldments.
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001096
EISBN: 978-1-62708-162-7
Abstract
Electrical resistance alloys include those types used in instruments, control equipment, heating elements, and devices that convert heat generated to mechanical energy. This article discusses the basic classification of electrical resistance alloys (resistance alloys, heating alloys, and thermostat metals), their subtypes, properties, service life, and operating temperatures. It describes the designing and fabrication of open resistance and sheathed heaters. The article contains a collection of tables and graphs that provide information on the mechanical properties, chemical composition, temperature coefficient of resistance, furnace operating temperatures, length and spacing of loops, ribbon size, and electrical capacity of heating elements.