Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Infrared thermography
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006954
EISBN: 978-1-62708-439-0
Abstract
This article provides readers with a brief review of the applications of thermography in additive manufacturing (AM), which still is largely a research and development (R&D) effort. There is a particular focus on metals-based laser powder-bed fusion (L-PBF), although applications in directed-energy deposition (DED) and electron beam PBF (E-PBF) also are mentioned. The metrological basis of thermography is discussed in the article. Background information on radiation thermometry is provided, including how the various equations are applied. Finally, specific examples and lessons learned from various AM thermographic studies at the National Institute of Standards and Technology (NIST) are provided.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
Abstract
Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003657
EISBN: 978-1-62708-182-5
Abstract
This article begins with an overview of the various aspects of infrared pulse thermography used to detect disbondments, delaminations, and generalized corrosion. It describes the distinctive phases of the pulse thermographic process and the key components that are required to perform active thermography. The components include an excitation source, a thermographic camera, and a computer with software that controls the instrumentation, acquires data, and displays the results. The article discusses the process and experimental setup of sonic thermography used for crack detection.