Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 177
Engineering design
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006947
EISBN: 978-1-62708-439-0
Abstract
Additive manufacturing (AM) processes fabricate parts in a layer-by-layer manner by which materials are added and processed repeatedly. This article introduces the general concepts and approaches to design for AM (DFAM) and outlines important implications for part characteristics, design opportunities, manufacturing practices, supply chains, and even business models. It presents contrasting perspectives on DFAM, followed by a discussion on more general and overarching opportunistic design methods and on design for constraints, similar to conventional DFM. It concludes with a presentation of a design approach to the AM process chain, acknowledging that AM-fabricated parts typically undergo several postprocessing steps and that it is important to design taking into account these steps.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006948
EISBN: 978-1-62708-439-0
Abstract
Additive manufacturing (AM) offers expansive design freedoms for realizing parts that are more complex and customized than their conventionally fabricated counterparts, but all AM technologies impose restrictions on buildable geometries and features. Design rules capture those restrictions in the form of best practices to successfully design for AM. This article discusses how design rules can potentially support and accelerate the process of developing part geometry for AM. The discussion provides examples of design rules that are independent of any specific AM process and then discusses design rules specific to particular AM processes.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006949
EISBN: 978-1-62708-439-0
Abstract
This article focuses on two streams of the research on part consolidation (PC): PC in the conventional manufacturing context, and PC in the additive manufacturing (AM) context. It reviews the challenges of applying AM-PC potentials. The article includes research literature on the selection of part candidates for consolidation and summarizes the conversion of assembly design to consolidated design. Then, a holistic approach for supporting PC design is introduced with integrated modules of part filtering and fusion of parts. Details of the key techniques of the two modules are later introduced with a gas pedal example. Finally, emerging trends in PC research are discussed.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006868
EISBN: 978-1-62708-395-9
Abstract
This article presents the benefits of selecting plastics for products to be manufactured. It discusses the four key considerations for plastic part design: material, process, tooling, and design. The article provides a detailed discussion of the development sequence for plastic parts. The basis for the development sequence is twofold: first, to create the best solution for the application, and second, to minimize potential project risks through careful and thoughtful work habits.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
Abstract
This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides general design rules for the plastic forming processes covered. It also discusses the steps involved in design validation and verification.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006912
EISBN: 978-1-62708-395-9
Abstract
Plastic product failures are directly attributed to one of the following four reasons: omission of a critical performance requirement, improper materials specification, design error, and processing/manufacturing error. Therefore, product failures can be minimized or eliminated if all of these parameters are comprehensively examined during the design process. This article focuses on all of these factors, except processing-related failures, which are outside the design and engineering domain. It is dedicated to the identification and avoidance of common problems associated with the selection and designing of plastic parts. The article provides information on the material-related design criteria that depend on the applications, environmental conditions of use, and performance requirements. It discusses physical properties of plastics based on their relevance to real-world environmental conditions. The most-common design problems related to design considerations are also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006938
EISBN: 978-1-62708-395-9
Abstract
A design may be improvable without presenting an unacceptable risk related to safety or performance. However, design-related failures can result from an oversight in performing one of the major design activities or from a failure to balance the competing demands inherent to part design. This article focuses on design-related failures in products utilizing polymeric materials, and reviews important considerations of the design envelope of plastic parts. The article provides a non-exhaustive list and descriptions of design tools that can support the design process and the prevention of design-related failures. It also discusses the most common causes of design-related failures of plastic parts. The article can assist in both failure analysis and in the prevention of failures in which design may be a contributing factor or a root cause.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006815
EISBN: 978-1-62708-329-4
Abstract
The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause of failure. Next, the article discusses the steps involved in the engineering design process and explains the importance of considering the engineering design process. Information on failure modes and effects analysis is also provided. The article ends with a discussion on the consequence of management actions on failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006832
EISBN: 978-1-62708-329-4
Abstract
The purpose of this article is to assist the reader in understanding the role that an engineering expert witness plays in evaluating incidents related to product liability, so that he or she may become better acquainted with the role that an engineer plays in such litigation. The topics covered are admissibility of expert opinions, how to evaluate data, factual evidence, mandatory and voluntary standards, physical evidence, medical records, scientific literature, design decisions evaluation, environment of use, user's contribution, reports of opposing experts, report of findings, and deposition and trial testimonies.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006560
EISBN: 978-1-62708-290-7
Abstract
This article introduces the design and manufacturing implications of additive manufacturing (AM) on part characteristics as well as on design opportunities and on manufacturing practices, supply chains, and even business models. In addition, it describes how they relate to the fundamental nature of AM processes and discusses the characteristics and purposes of AM processes and the parts they fabricate.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006544
EISBN: 978-1-62708-210-5
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
Abstract
This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from published industry sources is given for a wide range of the properties and performance characteristics for topics such as: physical and thermophysical properties, typical and minimum mechanical properties, fatigue resistance, fracture resistance, and subcritical crack growth.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006623
EISBN: 978-1-62708-210-5
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006486
EISBN: 978-1-62708-210-5
Abstract
Aluminum wrought products, castings, welds, and fasteners are used in many structural applications where they are required to safely support a load. It is useful to design aluminum structural components with its structural properties in mind from conceptualization rather than attempting to mimic components of other materials. This article discusses design specifications, design requirements and methods, and material properties used in aluminum structural design. These properties include tensile yield strength and tensile ultimate strength, welding, and ductility. The article describes various factors that affect the strength of two categories of aluminum structural components, namely members and connections. Design requirements for aluminum bolts, rivets, screws, and pins are provided. The article concludes with a discussion on the considerations for serviceability, namely deflections and vibrations.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006513
EISBN: 978-1-62708-207-5
Abstract
Aluminum casting in steel and iron permanent molds is used widely throughout industry, and the vast majority of permanent mold castings are made of aluminum and its alloys. There are several methods used to cast aluminum in permanent molds. This article focuses on permanent mold casting with molten aluminum fed by gravity, low pressure, vacuum and centrifugal pressure, and squeeze casting. It discusses the major variables that affect the life of permanent molds, including pouring temperature, casting shape, cooling methods, heating cycles, storage, and cleaning. The article reviews the basic components of mold coatings: refractory fillers, binder, and carrier. Casting defects and suggested corrective actions for permanent mold casting are summarized in a table. The article concludes with a discussion on thin-wall permanent-mold castings.
1