Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 242
Design synthesis and analysis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007001
EISBN: 978-1-62708-450-5
Abstract
This article explains cooling mechanisms involving saltwater solutions used as quenchants. The analyses of cooling power include studies of cooling curves, heat-transfer coefficients, and cooling rates. The influence of other bath parameters, such as temperature and agitation, is also discussed. The article discusses solute additions and several factors impacting quenching.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007007
EISBN: 978-1-62708-450-5
Abstract
The role of a mixer/agitator in quenching applications is to control the mixing environment in order to meet the process criteria. This article provides the basic fundamentals of the sizing of agitators, tank geometry importance, and other considerations for the application of agitators in quench tanks. It also discusses the differing methods for the sizing and selection of agitators for quench tank applications.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007008
EISBN: 978-1-62708-450-5
Abstract
Computational fluid dynamics (CFD) provides an efficient, alternate, virtual approach for simulating and analyzing quenching processes with an impact on component design, manufacturing process, and quality. This article provides domain insights for quenching researchers and CFD practitioners for the modeling of the industrial quenching process and for supporting the diverse multifunctional needs in an industry, ranging from primary metallurgical companies (steel, aluminum, and other alloys), original equipment manufacturers, engineering companies, captive and commercial heat treating facilities, quench system manufacturers, and quench fluid suppliers. It describes the governing differential equations for the fluid flow and heat-transfer phenomena during quenching. The article also discusses different modeling categories to determine a CFD methodology for quenching.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006997
EISBN: 978-1-62708-450-5
Abstract
This article presents the modes of heat transfer and the stages of cooling during quenching. It provides an overview on the wetting process and then focuses on the evaluation of heat transfer during quenching. It also presents the challenges of thermal process evaluation based on an inverse heat conduction analysis. The article contains a compilation of best practice examples on heat transfer evaluation, which are intended to represent the practical aspects and applicability of the methods aiming the prediction of heat-transfer coefficients.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007006
EISBN: 978-1-62708-450-5
Abstract
Agitation is one of the most critical areas of quench system design. This article provides an overview of the impact of agitation on quench uniformity, followed by a general discussion of the selection and use of various types of agitators, including recirculation pumps, jet mixers, forced air (sparging), and impellers. A brief overview of heat-exchanger types and their selection criteria is also provided, along with simplified calculations for approximating heat-exchange requirements. The methods of selecting a quenchant are provided. Recommendations for system maintenance are also described. Much effort is placed on the proper design of the furnace for temperature and atmosphere uniformity, proper temperature control, and exact carbon potential. However, the design of the quench tank can have a drastic effect on the overall system performance, with proper design ensuring proper mechanical properties (hardness, strength, and fracture toughness) as well as distortion control.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.9781627084505
EISBN: 978-1-62708-450-5
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006947
EISBN: 978-1-62708-439-0
Abstract
Additive manufacturing (AM) processes fabricate parts in a layer-by-layer manner by which materials are added and processed repeatedly. This article introduces the general concepts and approaches to design for AM (DFAM) and outlines important implications for part characteristics, design opportunities, manufacturing practices, supply chains, and even business models. It presents contrasting perspectives on DFAM, followed by a discussion on more general and overarching opportunistic design methods and on design for constraints, similar to conventional DFM. It concludes with a presentation of a design approach to the AM process chain, acknowledging that AM-fabricated parts typically undergo several postprocessing steps and that it is important to design taking into account these steps.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006948
EISBN: 978-1-62708-439-0
Abstract
Additive manufacturing (AM) offers expansive design freedoms for realizing parts that are more complex and customized than their conventionally fabricated counterparts, but all AM technologies impose restrictions on buildable geometries and features. Design rules capture those restrictions in the form of best practices to successfully design for AM. This article discusses how design rules can potentially support and accelerate the process of developing part geometry for AM. The discussion provides examples of design rules that are independent of any specific AM process and then discusses design rules specific to particular AM processes.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006949
EISBN: 978-1-62708-439-0
Abstract
This article focuses on two streams of the research on part consolidation (PC): PC in the conventional manufacturing context, and PC in the additive manufacturing (AM) context. It reviews the challenges of applying AM-PC potentials. The article includes research literature on the selection of part candidates for consolidation and summarizes the conversion of assembly design to consolidated design. Then, a holistic approach for supporting PC design is introduced with integrated modules of part filtering and fusion of parts. Details of the key techniques of the two modules are later introduced with a gas pedal example. Finally, emerging trends in PC research are discussed.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006950
EISBN: 978-1-62708-439-0
Abstract
Additive manufacturing (AM) provides exceptional design flexibility, enabling the manufacture of parts with shapes and functions not viable with traditional manufacturing processes. The two paradigms aiming to leverage computational methods to design AM parts imbuing the design-for-additive-manufacturing (DFAM) principles are design optimization (DO) and simulation-driven design (SDD). In line with the adoption of AM processes by industry and extensive research efforts in the research community, this article focuses on powder-bed fusion for metal AM and material extrusion for polymer AM. It includes detailed sections on SDD and DO as well as three case studies on the adoption of SDD, DO, and artificial-intelligence-based DFAM in real-life engineering applications, highlighting the benefits of these methods for the wider adoption of AM in the manufacturing industry.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006951
EISBN: 978-1-62708-439-0
Abstract
This article provides an introduction to architected cellular materials, their design, fabrication, and application domain. It discusses design decisions involving the selection, sizing, and spatial distribution of the unit cell, property-scaling relationships, and the integration of cells within an external boundary. It describes how manufacturing constraints influence achievable feature resolution, dimensional accuracy, properties, and defects. It also discusses the mechanical behavior of architected cellular materials and the role of additive manufacturing in their fabrication.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006973
EISBN: 978-1-62708-439-0
Abstract
Additive manufacturing (AM) is a highly desired layer-by-layer fabrication process capable of creating near-net-shaped three-dimensional components for a wide range of industries, such as the automotive and aerospace industries. This article focuses on aluminum, titanium, and stainless steel alloys that are commonly used or highly desired for use with AM due to their widespread applicability and favorable mechanical properties. It presents an overview of two of the major AM processes: powder-bed and powder-fed. The article discusses processability using AM. It also provides an overview of material microstructures, defects, and the impact on mechanical behaviors.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006970
EISBN: 978-1-62708-439-0
Abstract
Additive manufacturing (AM) has gained increased significance and has been adopted across many industries for various applications. Specific net-shape AM fabrication methods, such as laser powder-bed fusion (LPBF), have matured significantly, leading to aerospace sector R&D focused on the feasibility of using flagship alloys to manufacture complex components. This article presents one example of an aluminum alloy design tailored for laser powder-bed fusion AM. It discusses the integrated computational materials engineering design approach. The article also presents the design for high-strength, high-temperature aluminum alloys.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006991
EISBN: 978-1-62708-439-0
Abstract
To improve the performance of additive manufacturing (AM) systems, a critical need exists for collaborative generation, acquisition, curation, and analysis of digital AM data across the product life cycle. This article discusses the history, development, and potential benefits of the AM Common Data Dictionary (AM-CDD), along with future directions.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.9781627084390
EISBN: 978-1-62708-439-0
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006868
EISBN: 978-1-62708-395-9
Abstract
This article presents the benefits of selecting plastics for products to be manufactured. It discusses the four key considerations for plastic part design: material, process, tooling, and design. The article provides a detailed discussion of the development sequence for plastic parts. The basis for the development sequence is twofold: first, to create the best solution for the application, and second, to minimize potential project risks through careful and thoughtful work habits.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006919
EISBN: 978-1-62708-395-9
Abstract
This article reviews the impact response of plastic components and the various methods used to evaluate it.. It describes the effects of loading rate on polymer deformation and the influence of temperature and strain rate on failure mode. It discusses the advantages and limitations of standard impact tests, the use of puncture tests for assessing material behavior under extreme strain, and the application of fracture mechanics for analyzing impact failures. It also develops and demonstrates the theory involved in the design and analysis of thin-walled, injection-molded plastic components.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
Abstract
This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides general design rules for the plastic forming processes covered. It also discusses the steps involved in design validation and verification.
1