Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 59
Heat transfer properties
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.9781627084505
EISBN: 978-1-62708-450-5
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006997
EISBN: 978-1-62708-450-5
Abstract
This article presents the modes of heat transfer and the stages of cooling during quenching. It provides an overview on the wetting process and then focuses on the evaluation of heat transfer during quenching. It also presents the challenges of thermal process evaluation based on an inverse heat conduction analysis. The article contains a compilation of best practice examples on heat transfer evaluation, which are intended to represent the practical aspects and applicability of the methods aiming the prediction of heat-transfer coefficients.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007000
EISBN: 978-1-62708-450-5
Abstract
Flow visualization is an important characterization process to not only understand uniformity of the interfacial cooling mechanisms, but also to characterize the overall impact of agitation on the uniformity of the overall cooling process. This article focuses on thermal flow simulation and visualization in the quenching process. The study presents the effect of bubbling, boiling, and breaking the steam film on the heat-transfer coefficient during the agitated quenching process.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007005
EISBN: 978-1-62708-450-5
Abstract
This article details investigations on the characterization of various nanofluids as quenchants for industrial heat treatment. It provides a discussion on the preparation, stability, thermophysical properties, and wetting characteristics of nanofluids. The article explains the mechanism of heat transfer in nanofluids and discusses the effect of the deposition of nanoparticles on the probe surface. The article also presents the microstructure and mechanical properties of steel quenched in nanofluids.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007012
EISBN: 978-1-62708-450-5
Abstract
Spray quenching (or jet impingement) is the most common technique employed to improve the uniformity of heat removal and break the vapor layer, allowing for a high cooling rate to be achieved. This article presents the heat transfer characteristics of quenching a hot surface, which can be expressed by the boiling and quench curve. It discusses three major spray parameters that have a substantial role in the quantification of spray cooling performance: droplet size, droplet velocity, and volumetric flux. The article also presents the available models and correlations to predict the cooling rate in spray quenching of hot surfaces during different boiling phases. It then discusses the effect of surface roughness on spray cooling performance.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
Abstract
Engineering plastics, as a general class of materials, are prone to the development of internal stresses which arise during processing or during servicing when parts are exposed to environments that impose deformation and/or temperature extremes. Thermal stresses are largely a consequence of high coefficients of thermal expansion and low thermal diffusivities. Although time-consuming techniques can be used to analyze thermal stresses, several useful qualitative tests are described in this article. The classification of internal stresses in plastic parts is covered. The article describes the effects of low thermal diffusivity and high thermal expansion properties, and the variation of mechanical properties with temperature. It discusses the combined effects of thermal stresses and orientation that result from processing conditions. The article also describes the effect of aging on properties of plastics. It explains the use of high-modulus graphite fibers in amorphous polymers.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006464
EISBN: 978-1-62708-190-0
Abstract
For most nondestructive evaluation (NDE) applications, the term thermography actually refers to surface-excited thermography (SET) that involves thermal mapping of surface temperature as heat flows from, to, or through a test object in response to excitation applied to the sample surface. This article discusses the strategies for implementing thermography for NDE, including the steady-state/whole-body approach and transient heat conduction. It describes the most common signal-processing methods, such as thermographic signal reconstruction, lock-in thermography, and pulsed-phase thermography. The article concludes with a discussion on the use of thermal methods for thermal diffusivity measurement and characterization of multilayer structures.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006453
EISBN: 978-1-62708-190-0
Abstract
Thermal nondestructive evaluation (TNDE) is an indirect process, so that regardless of the form of energy used to excite the sample, interaction with the internal structure of a part occurs through the process of heat conduction. This article discusses the steady-state configuration and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common features, characteristics, and limitations of these approaches.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006370
EISBN: 978-1-62708-192-4
Abstract
This article describes friction force as a function of normal force in dry forming. It focuses on metal forming operations usually classified as cold working and hot working based on metallurgical considerations. The article discusses surface flattening and roughening of workpiece asperities in metal forming. It presents advanced tribology models and results for friction in isothermal forging operations in which the tooling is maintained at a temperature close to that of the workpiece. The article provides information on heat transfer models. It discusses the effect of wear in manufacturing processes. The article concludes with information on the main categories of tool and die materials used for a variety of manufacturing application.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006098
EISBN: 978-1-62708-175-7
Abstract
This article describes the physical properties of powder metallurgy (PM) stainless steels. These include thermal diffusivity, conductivity, thermal expansion coefficient, Poisson's ratio, and elastic modulus. The article contains a table that lists the characteristics of various grades of PM stainless steels. It discusses the applications of various PM stainless steels such as rearview mirror brackets, anti-lock brake system sensor rings, and automotive exhaust flanges and sensor bosses.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005991
EISBN: 978-1-62708-166-5
Abstract
Heat treating involves the use of fuel gases for heating and gases in the furnace atmosphere. This article describes the hazards associated with furnace atmospheres and the related safety considerations. It discusses the effect of fuel on combustion efficiency. The article also contains tables that provide information on the physical, thermal and combustion properties of common gases and liquids, and the heat content of various gases.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005993
EISBN: 978-1-62708-166-5
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. With detailed explanations and dimensioned drawings, the article demonstrates how to set up and solve real-world problems, accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation. The article also includes reference data and provides closed-form solutions for common heat-transfer applications such as insulated pipes, cooling fins, radiation shields, and composite structures and configurations.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005935
EISBN: 978-1-62708-166-5
Abstract
This article focuses on the heat removal stages involved in quenching, and on the experimental setup used for measuring temperature and detecting sound signals with the help of illustrations and curves. The quenching process generates acoustic signals, which are the consequences of the phase transformation of steel and of the boiling process at the interface during the cooling process. The sound-pressure signal is captured by the hydrophone through sound-emission measurements that occur during steel quenching in different quenching media. The analysis of the results offers an interesting approach to evaluation and, more importantly, to monitoring, controlling, and optimizing the entire quenching process.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005930
EISBN: 978-1-62708-166-5
Abstract
This article reviews high-temperature corrosion of furnace parts used in heat-treating furnaces. It provides a comparison of cast and wrought materials in the context of their general considerations, advantages, and applications. The article provides information on the heat-resistant alloys used for parts that go through the furnaces, including trays, fixtures, conveyor chains and belts, and quenching fixtures and parts, and the parts that remain in the furnace such as combustion tubes, radiant tubes, burners, thermowells, roller and skid rails, baskets, pots, retorts, muffles, and drive and idler drums. The article also reviews the material characteristics of silicon/silicon carbide composite and reaction-bonded silicon carbide as used in radiant tubes.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005927
EISBN: 978-1-62708-166-5
Abstract
This article discusses the important characteristics of fluidized beds. The total space occupied by a fluidized bed can be divided into three zones: grid zone, main zone, and above-bed zone. The article discusses the various types of atmospheres of fluidized beds, such as oxidizing and decarburizing atmosphere; nitrocarburizing and nitriding atmosphere; carburizing and carbonitriding atmosphere; and chemical vapor deposition atmosphere. External resistance heating, external combustion heating, internal resistance heating, direct resistance heating, submerged combustion heating, and internal combustion heating can be used to achieve the heat input for a fluidized bed. The article also describes the operations, design considerations, and applications of fluidized-bed furnaces in heat treating. Thermochemical surface treatments, such as carburizing, carbonitriding, nitriding, and nitrocarburizing, are also discussed. Finally, the article reviews the principles and applications of fluidized-bed heat treatment.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005835
EISBN: 978-1-62708-167-2
Abstract
Induction heating is a combination of several interrelated physical phenomena, including heat transfer, electromagnetics, and metallurgy. This article presents a brief review of different heat transfer modes, namely, heat conduction, thermal radiation, and convection. It focuses on the specifics of induction heating and heat treating applications. The article discusses the nonlinear and interrelated nature of a particular heat transfer phenomenon, physical property, and skin effect. It also presents simple case studies and general physical laws governing different heat transfer modes. The article also discusses the basic concepts of direct current and alternating current circuits, and reviews the theory of electromagnetic fields.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005878
EISBN: 978-1-62708-167-2
Abstract
Temperature is a typical parameter characterizing the heating level of any particle belonging to a heated body. The basic problem of heat transfer computation is associated with appropriate determination of heat transfer coefficients. This article provides a discussion on the basic equations, initial and boundary conditions, and multiple reflection phenomena of mathematical modeling. These boundary conditions include the Dirichlet, Neumann, and Henkel conditions.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005879
EISBN: 978-1-62708-167-2
Abstract
Induction heating computations deal with a multiphysics problem containing analysis of several coupled physical fields such as electromagnetic, temperature, mechanical, and metallurgical. In order to solve coupled electromagnetic-temperature field problems, it is necessary to develop suitable algorithms and numerical procedures, which make it possible to deal with these nonlinear coupled problems. This article focuses on the most common approaches to coupled electromagnetic and heat transfer problems, namely, weak-, quasi-, and hard-coupled formulations.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005814
EISBN: 978-1-62708-165-8
Abstract
This article describes the mechanisms and characteristics of heat transfer in the quenching of steel. This article describes the characterization of boiling heat transfer, including pool boiling, forced convective boiling, and rewetting, which plays a key role in defining the heat-extraction characteristics of a liquid quenchant. It provides information on heat generated microstructural field evolution and information on the analysis and characterization of heat transfer boundary conditions.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005789
EISBN: 978-1-62708-165-8
Abstract
This article provides a discussion on probes for laboratory tests and resultant curves of industrial quenching processes. It describes the scope of the tests, and the calculation of heat-transfer coefficient (HTC) based on the tests. The article highlights the differences between the laboratory tests and characterization of industrial quenching processes. It reviews the importance of initial heat-flux density and first critical heat-flux density. The theoretical principle behind and the purpose of the temperature gradient method are discussed. The article provides information on the design of the probe, heat-extraction dynamics, and influence of wetting kinematics. It also includes discussions on the simplified 1-D temperature-distribution model, calculation of the HTC, and the finite-volume method for the heat-conduction equation.
1