Skip Nav Destination
Close Modal
By
Lucas W. Koester, Leonard J. Bond, Peter C. Collins, Hossein Taheri, Timothy Bigelow
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Neutron radiography
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006465
EISBN: 978-1-62708-190-0
Abstract
Additive manufacturing (AM) is the process of joining materials to make parts from three-dimensional (3D) model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies. This article discusses various defects in AM components, such as porosity, inclusions, cracking, and residual stress, that can be avoided by using vendor recommended process parameters and approved materials. It describes the development of process-structure-property-performance modeling. The article explains the practical considerations in nondestructive evaluation for additively manufactured metallic parts. It also examines nondestructive testing (NDT) inspection and characterization methods for each of the manufacturing stages in their natural order. The article provides information on various inspection techniques for completed AM manufactured parts. The various electromagnetic and eddy current techniques that can be used to detect changes to nearsurface geometric anomalies or other defects are also discussed. These include ultrasonic techniques, radiographic techniques, and neutron imaging.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006457
EISBN: 978-1-62708-190-0
Abstract
Adhesive-bonded joints are extensively used in aircraft components and assemblies where structural integrity is critical. This article addresses the problem of how to inspect bonded assemblies so that all discrepancies are identified. It describes several inspection techniques and presents drawbacks and limitations of these techniques. Generic flaw types and flaw-producing mechanisms are listed in a table. The article discusses metal-to-metal defects, adherend defects, honeycomb sandwich defects, repair defects, and in-service defects. It reviews the methods applicable to the inspection of bonded structures, including visual inspection, ultrasonic inspection, X-ray radiography, and neutron radiography. The evaluation and correlation of inspection results are also discussed. The article concludes with information on the effects of ultrasonic wave interference in the ultrasonic inspection of adhesive-bonded joints.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003238
EISBN: 978-1-62708-199-3
Abstract
Radiography is a nondestructive-inspection method that is based on the differential absorption of penetrating radiation by the part or test piece (object) being inspected. This article discusses the fundamentals and general applications of radiography, and describes the sources of radiation in radiographic inspection, including X-rays and gamma rays. It deals with the characteristics that differentiate neutron radiography from X-ray or gamma-ray radiography. The geometric principles of shadow formation, image conversion, variation of attenuation with test-piece thickness, and many other factors that govern the exposure and processing of a neutron radiograph are similar to those for radiography using X-rays or gamma rays.