Skip Nav Destination
Close Modal
By
Sergio Lupi, Valery Rudnev
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Coefficient of linear thermal expansion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Thermal Properties of Carbon and Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0006002
EISBN: 978-1-62708-168-9
Abstract
This article is a comprehensive collection of tables that present information on the various thermal properties, namely, the coefficient of linear thermal expansion, thermal conductivity, and specific heat, of carbon and low-alloy steels.
Book Chapter
Electromagnetic and Thermal Properties of Materials
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005896
EISBN: 978-1-62708-167-2
Abstract
In an induction heating system, thermal and electromagnetic properties of heated materials make the greatest impact on the heat transfer and performance of induction heating process. This article focuses on major thermal properties, namely, thermal conductivity, heat capacity, and specific heat. It describes the two important electromagnetic properties, electrical resistivity (electrical conductivity) and magnetic permeability, which posses the most pronounced effect on the performance of the induction heating system, its efficiency, and selection of main design parameters. The article also discusses the magnetic properties of diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic, antiferromagnetic, and metamagnetic materials.
Book Chapter
Physical Properties of Carbon and Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001010
EISBN: 978-1-62708-161-0
Abstract
This article discusses the following physical properties of AISI and SAE grades of carbon and low-alloy steels: coefficients of linear thermal expansion; thermal conductivity; specific heat; and electrical resistivity.