Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-16 of 16
Coefficient of thermal expansion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
Abstract
Engineering plastics, as a general class of materials, are prone to the development of internal stresses which arise during processing or during servicing when parts are exposed to environments that impose deformation and/or temperature extremes. Thermal stresses are largely a consequence of high coefficients of thermal expansion and low thermal diffusivities. Although time-consuming techniques can be used to analyze thermal stresses, several useful qualitative tests are described in this article. The classification of internal stresses in plastic parts is covered. The article describes the effects of low thermal diffusivity and high thermal expansion properties, and the variation of mechanical properties with temperature. It discusses the combined effects of thermal stresses and orientation that result from processing conditions. The article also describes the effect of aging on properties of plastics. It explains the use of high-modulus graphite fibers in amorphous polymers.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006692
EISBN: 978-1-62708-210-5
Abstract
Wrought 4xxx alloys (extrusions and forgings) exhibit high surface hardness, wear resistance, and a low coefficient of thermal expansion. This article provides a summary of brazing filler metals used to join brazeable aluminum-base metals. It contains tables that list the nominal composition and filler-metal alloys of 4xxx series used in structural forms.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006565
EISBN: 978-1-62708-210-5
Abstract
The aluminum alloy 336.0 is a high-silicon alloy suitable for applications where good high-temperature strength, low coefficient of thermal expansion, and good resistance to wear are required. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and application characteristics of this 3xxx series alloy.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006098
EISBN: 978-1-62708-175-7
Abstract
This article describes the physical properties of powder metallurgy (PM) stainless steels. These include thermal diffusivity, conductivity, thermal expansion coefficient, Poisson's ratio, and elastic modulus. The article contains a table that lists the characteristics of various grades of PM stainless steels. It discusses the applications of various PM stainless steels such as rearview mirror brackets, anti-lock brake system sensor rings, and automotive exhaust flanges and sensor bosses.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0006002
EISBN: 978-1-62708-168-9
Abstract
This article is a comprehensive collection of tables that present information on the various thermal properties, namely, the coefficient of linear thermal expansion, thermal conductivity, and specific heat, of carbon and low-alloy steels.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005896
EISBN: 978-1-62708-167-2
Abstract
In an induction heating system, thermal and electromagnetic properties of heated materials make the greatest impact on the heat transfer and performance of induction heating process. This article focuses on major thermal properties, namely, thermal conductivity, heat capacity, and specific heat. It describes the two important electromagnetic properties, electrical resistivity (electrical conductivity) and magnetic permeability, which posses the most pronounced effect on the performance of the induction heating system, its efficiency, and selection of main design parameters. The article also discusses the magnetic properties of diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic, antiferromagnetic, and metamagnetic materials.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005240
EISBN: 978-1-62708-187-0
Abstract
There are several main sources of thermophysical property data that provide the most authoritative and comprehensive compilations of critically and systematically evaluated data that are presently available. This article provides thermophysical property data to assist in the materials properties selection for the simulation of casting processes. The measurements of thermophysical property are difficult due to high temperatures and the reactivity of some alloys. The article discusses the strategies adopted to minimize the effects of high temperatures and reactivity of alloys. It presents the thermophysical properties of pure metals and some commercial alloys and tabulates the enthalpy of fusion and solidus and liquidus temperatures for various alloys of commercial interest. The article also lists the density, thermal conductivity, surface tension, and viscosity for some commercial alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004025
EISBN: 978-1-62708-185-6
Abstract
The material data for forging can be divided into two categories, namely, mechanical properties and thermophysical properties. This article describes the flow characteristics of key engineering materials, such as steels, aluminum alloys, copper alloys, titanium alloys, and nickel-base superalloys. It discusses the thermophysical properties for designing or optimizing a metalworking process: specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009013
EISBN: 978-1-62708-185-6
Abstract
Thermomechanical are used to gain insight into the causes of problems that arise during a given thermomechanical process. This article provides examples to demonstrate how significant the parameters were selected for specific tests. It examines the types of problems that can occur during a thermomechanical process. The article provides information on the thermophysical properties, which include specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density. It concludes with examples that illustrate how the various considerations in testing are successfully used to solve practical thermomechanical processing problems.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003442
EISBN: 978-1-62708-195-5
Abstract
Characterization of nonmechanical properties is performed in the testing and certification of composite materials. This article focuses on the properties of composites that are commonly investigated. The properties include: per ply thickness; constituent content; density; coefficient of thermal expansion and coefficient of moisture expansion; glass transition temperature; thermal conductivity, diffusivity, and specific heat.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003377
EISBN: 978-1-62708-195-5
Abstract
A unidirectional fiber composite (UDC) consists of aligned continuous fibers that are embedded in a matrix. This article describes a variety of analytical methods that are used to determine the various physical properties of the UDC. These properties include elasticity, thermal expansion coefficients, moisture swelling coefficients, static and dynamic viscoelastic properties, conductivity, and moisture diffusivity.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003404
EISBN: 978-1-62708-195-5
Abstract
This article describes the factors to be considered while performing electroforming process. The factors include the shape and size of the mold, expected durability of the mold, required delivery time, and manufacture and cost of the necessary mandrel. The article discusses mandrel fabrication by either the use of fiberglass/resins or by the machining of the mandrel directly from computer-aided design data. It provides a comparison of nickel and other tooling materials in terms of coefficients of thermal expansion, thermal cycles for compression molding, and thermal cycles for metal autoclave molds.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003159
EISBN: 978-1-62708-199-3
Abstract
Low-expansion alloys are materials with dimensions that do not change appreciably with temperature. Alloys included in this category are various binary iron-nickel alloys and several ternary alloys of iron combined with nickel-chromium, nickel-cobalt, or cobalt-chromium alloying. Low-expansion alloys are used in various applications such as rods and tapes for geodetic surveying, moving parts that require control of expansion (such as pistons for some internal-combustion engines), bimetal strip, components for electronic devices etc. This article discusses the properties, composition, and applications of iron-nickel low-expansion alloys (Invar), as well as other special alloys, including iron-nickel-chromium alloys, iron-nickel-cobalt alloys, iron-cobalt-chromium alloys, and high-strength, controlled-expansion alloys. It covers the factors affecting coefficient of thermal expansion of iron-nickel alloys, including heat treatment and cold drawing. Magnetic, physical, thermal, electrical and mechanical properties of iron-nickel alloys are also covered.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001299
EISBN: 978-1-62708-170-2
Abstract
This article discusses the various tests applied to a thermal barrier coating system and to the zirconia layer to establish thermomechanical, environmental stability, and thermal design properties such as coefficient of thermal expansion, specific heat, and thermal transport properties. Thermal fatigue testing and the test for evaluating oxidation resistance of the bond coat is also discussed.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001010
EISBN: 978-1-62708-161-0
Abstract
This article discusses the following physical properties of AISI and SAE grades of carbon and low-alloy steels: coefficients of linear thermal expansion; thermal conductivity; specific heat; and electrical resistivity.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001099
EISBN: 978-1-62708-162-7
Abstract
Low-expansion alloys are characterized by their dimensional stability, suiting them for applications such as geodetic tape, bimetal strip, glass-to-metal seals, and electronic components. This article describes the composition of such alloys along with related properties and behaviors. It explains how humidity and other factors, such as heat treating and cold drawing, influence thermal expansion rates. It also provides machining information on some of the more common low-expansion alloys, and reviews special alloy types including iron-cobalt-chromium alloys, hardenable alloys, and high-strength controlled-expansion alloys.