Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 133
Plastic deformation properties
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006952
EISBN: 978-1-62708-439-0
Abstract
This article provides a detailed discussion on nanoindentation hardness, high-strain-rate behavior and strain-rate sensitivity, and corrosion response of additively manufactured (AM) metals. It summarizes the most commonly used AM alloys for applications in harsh environments and their respective corrosion responses in various service environments. It also provides several case studies on location-dependent properties, microstructural evolution, and indentation strain-rate sensitivity of various additively manufactured alloys.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006990
EISBN: 978-1-62708-439-0
Abstract
Structure-property relationships for metal additive manufacturing (AM) using solidification-based AM processes (e.g., powder-bed fusion and directed-energy deposition) are the focus of this article. Static strength and ductility properties in AM materials are impacted heavily by the microstructure but are also affected by porosity and surface roughness. Fatigue failure in AM materials is also influenced by porosity, surface roughness, microstructure, and residual stress due to applied manufacturing processing parameters. Post-processing treatments can further influence fatigue failure in AM materials.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
Abstract
This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured thermosetting resins as well as the curing process. Then, the techniques to characterize the physical properties of cured thermosets and composites are presented. Several examples of stress-strain curves are shown for thermosets and thermoplastic polymers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
Abstract
This article provides practical information and data on property development in engineering plastics. It discusses the effects of composition on submolecular and higher-order structure and the influence of plasticizers, additives, and blowing agents. It examines stress-strain curves corresponding to soft-and-weak, soft-and-tough, hard-and-brittle, and hard-and-tough plastics and temperature-modulus plots representative of polymers with different degrees of crystallinity, cross-linking, and polarity. It explains how viscosity varies with shear rate in polymer melts and how processes align with various regions of the viscosity curve. It discusses the concept of shear sensitivity, the nature of viscoelastic properties, and the electrical, chemical, and optical properties of different plastics. It also reviews plastic processing operations, including extrusion, injection molding, and thermoforming, and addresses related considerations such as melt viscosity and melt strength, crystallization, orientation, die swell, melt fracture, shrinkage, molded-in stress, and polymer degradation.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006944
EISBN: 978-1-62708-395-9
Abstract
The discussion on the fracture of solid materials, both metals and polymers, customarily begins with a presentation of the stress-strain behavior and of how various conditions such as temperature and strain-rate affect the mechanisms of deformation and fracture. This article describes crazing and fracture in polymeric materials, with a review of the behavior of the elastic modulus as a function of temperature or time parameters, emphasizing the importance of the viscoelastic nature of their deformation and fracture. The discussion covers the behavior of polymers under stress, provides information on ductile and brittle behaviors, and describes craze initiation in polymers and crack formation and fracture by crazing. Macroscopic permanent deformation of polymeric materials caused by shear-yielding and crazing, which eventually can result in fracture and failure, is also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006743
EISBN: 978-1-62708-210-5
Abstract
Alloys 7175 and 7475 are high-purity versions of 7075 to improve ductility in the transverse direction of thick products. This datasheet provides information on key alloy metallurgy and processing effects on physical and mechanical properties of these 7xxx series alloys. It also provides a fatigue life comparison of these alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006544
EISBN: 978-1-62708-210-5
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006559
EISBN: 978-1-62708-210-5
Abstract
Alloy 295.0 is an Al-Cu-Si alloy suitable for sand casting requiring high strength with ductility and toughness. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications of this series alloy. Room-temperature aging characteristics for aluminum alloy 295.0-F, -T4, -T6, and -T7 are also illustrated.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006486
EISBN: 978-1-62708-210-5
Abstract
Aluminum wrought products, castings, welds, and fasteners are used in many structural applications where they are required to safely support a load. It is useful to design aluminum structural components with its structural properties in mind from conceptualization rather than attempting to mimic components of other materials. This article discusses design specifications, design requirements and methods, and material properties used in aluminum structural design. These properties include tensile yield strength and tensile ultimate strength, welding, and ductility. The article describes various factors that affect the strength of two categories of aluminum structural components, namely members and connections. Design requirements for aluminum bolts, rivets, screws, and pins are provided. The article concludes with a discussion on the considerations for serviceability, namely deflections and vibrations.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006442
EISBN: 978-1-62708-190-0
Abstract
This article discusses the principles and limitations of micromagnetic techniques, namely, magnetic Barkhausen noise (MBN) and magnetoacoustic emission (MAE). It also discusses various factors limiting the establishment of acceptance criteria for test components as they pertain to the successful application of MBN measurement and signal interpretation. The article provides an overview of basic magnetic phenomena and dynamics in ferromagnetic materials that underlie the origin of MBN emissions. It describes the changes in the domain structure of the ferromagnetic material under an applied external field. The relationship between uniaxial stress and angular-dependent strain is also discussed. The influence of stress on domain walls, and therefore, the generation of Barkhausen noise are described. The article also describes the directional and angular MBN measurements and provides information on detection, angular dependence, and advanced analysis methods of MBN emissions.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006390
EISBN: 978-1-62708-192-4
Abstract
This article focuses on the tribological behavior of group 1, 2, and 3 cobalt-base alloys, namely, carbide-type wear-resistant alloys and laves-type wear-resistant alloys. The behavior includes hardness, yield strength and ductility, and fracture toughness. The article contains a table that lists the nominal compositions and typical applications of cobalt-base alloys. It discusses the properties and relative performance of specific alloys when subjected to the more common types of wear. These include abrasive wear, high-temperature sliding wear, rolling-contact fatigue wear, and erosive wear.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006331
EISBN: 978-1-62708-179-5
Abstract
In cast iron, residual stresses normally arise due to hindered thermal contraction, meaning that they are associated with the presence of constraints that prevent the natural, free volumetric variation of the material upon solid-state cooling. This article explains their mechanism of formation by introducing the scalar relation, known as the additive strain decomposition. The main factors influencing casting deformation are volume changes during solidification and cooling, phase transformations, alloy composition, thermal gradients, casting geometry, and mold stability. The article reviews the dimensional stability in cast iron and discusses macroscopic and microscopic stresses in cast iron.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006333
EISBN: 978-1-62708-179-5
Abstract
Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. This article discusses melting practices such as batch cold melting and duplexing, and their control mechanisms. It schematically illustrates the microstructure of annealed ferritic malleable iron, which is characterized by microstructures consisting of uniformly dispersed fine particles of free carbon in a matrix of ferrite or tempered martensite. The article describes the digital solidification analysis technology, simulation technologies, and smart engineering for the production of malleable iron. It provides information on the applications of ferritic and pearlitic malleable irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006307
EISBN: 978-1-62708-179-5
Abstract
This article describes a method to predict mechanical properties of cast iron materials and illustrates how to use the predictions in computer-aided tools for the analysis of castings subjected to load. It outlines some ways to predict the hardness and elastic modulus of cast iron without going into dislocation theory. The article discusses modeling of hardness in cast iron based on a regular solution equation in which the properties of each phase depend on chemical composition and coarseness. It describes the evaluation of material parameters from the tensile stress-strain curve. The article concludes with an illustration of a finite-element method (FEM) model containing heterogeneous mechanical properties using local material definitions.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006308
EISBN: 978-1-62708-179-5
Abstract
Gray irons are commonly classified by their minimum tensile strength. This article describes properties used in the selection of gray irons and the factors that affect properties, particularly the effect of solidification. It discusses the three steps that its processing undergoes in the foundry: liquid metal preparation, solidification, and solid-state transformation. The article discusses the tensile properties of gray cast iron: tensile strength, yield strength, ductility, and modulus of elasticity. It describes hardness tests that are performed for determining the approximate strength characteristics and machinability of a gray iron casting. The article also presents typical mechanical properties of heat-resistant gray irons in a table. It concludes with information on the automotive application of alloy cast irons.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006347
EISBN: 978-1-62708-179-5
Abstract
Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. There are two basic types of malleable iron: blackheart and whiteheart. This article focuses on the blackheart malleable iron and discusses the chemical composition of malleable iron. A summary of mechanical properties and specifications of malleable iron castings is presented in a table. The article also reviews the mechanical properties of ferritic malleable iron and pearlitic and martensitic-pearlitic malleable irons.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006284
EISBN: 978-1-62708-169-6
Abstract
This article describes the changes in structure and properties that occur when cold worked metals and alloys are annealed. Recovery, recrystallization, and grain growth are the three stages of structural change that occur when cold-worked metal is annealed. The driving force and extent of structural or property changes may depend on alloy structure and the degree of prior work.
1