Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Coefficient of friction
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006361
EISBN: 978-1-62708-192-4
Abstract
This article describes the numerous techniques used to measure friction. It provides a brief description of the historical development of friction testing. The article discusses the tests and equipment available for friction testing. It explains the procedural considerations that should be addressed to ensure that valid data are derived from a friction test. The article presents definitions of terms commonly used in tribology such as static friction, kinetic coefficient of friction, stick-slip behavior, and lubricated friction. It provides information on the precautions that must be taken to ensure valid test results. The article also describes how to report data and how to analyze these data.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006401
EISBN: 978-1-62708-192-4
Abstract
This article provides a brief introduction to lubrication as a method to reduce friction between two surfaces. It discusses the surface characteristics of parts and explores how lubrication helps separate two contacting surfaces and thereby decreases the coefficient of friction. The article details the classifications of lubrication regimes, namely, boundary, mixed, hydrodynamic, and elastohydrodynamic lubrications. It discusses the various types of lubricant materials and additives, including liquid lubricants, solid lubricants, gaseous lubricants, greases, green lubricants, and nanomaterials. The article also reviews the properties of lubricants. It describes the tribological evaluation of lubricants, including stribeck test, four-ball test, block-on-ring test, pin-in-vee test, and reciprocating motion test.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006393
EISBN: 978-1-62708-192-4
Abstract
This article discusses the composition, properties and applications of bearing steels. It focuses on the typical wear modes that rolling-element bearings experience: contact fatigue wear, abrasive wear, adhesive wear, and corrosive wear. The article provides information on reliability factor and ABMA and ISO environmental factors.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006420
EISBN: 978-1-62708-192-4
Abstract
Boronizing is a case hardening process for metals to improve the wear life and galling resistance of metal surfaces. Boronizing can be carried out using several techniques. This article discusses the powder pack cementation process for carrying out boronizing. It describes the structures of boride layers in ferrous materials and boride-layer structures in nickel-base superalloys. The primary reason for boriding metals is to increase wear resistance against abrasion and erosion. The article reviews the wear resistance and coefficient of friction of boride layers, as well as galling resistance of borided surfaces. It concludes with a discussion on boronizing plus physical vapor deposition (PVD) overlay coating.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005668
EISBN: 978-1-62708-198-6
Abstract
This article provides an overview of the fundamentals of tribology. It describes the advantages, disadvantages, and applications of the pin-on-disk method, which is the most commonly used configuration for testing biomaterials and for the reproducible measurement of friction and wear. The article illustrates a practical tribocorrosion setup that allows a user to perform wear tests in corrosive environments under well-defined electrochemical conditions and at controlled temperature. It explains the effect of changes in electrical contact resistance on tribological mode. The article discusses various in vivo environmental conditions in tribological tests. Some typical examples of biomaterials testing are also provided.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005417
EISBN: 978-1-62708-196-2
Abstract
This article examines the deformation processes in metal-forming operations and considers the effects introduced by scale factors when microforming. It discusses the process parameters and variables affecting surface interactions, including temperature, speed, reduction, stiffness, and dynamic response of equipment. The article reviews the determination of friction coefficient using laboratory monitoring methods, indirect measurements, and the inverse method. It considers the determination of the interface heat-transfer coefficient by using the ring test and computer simulations. The article describes the behavior of oxide scale on the surface of hot metal undergoing thermomechanical processing. It concludes with information on the effects of process and material parameters on interfacial phenomena.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003281
EISBN: 978-1-62708-176-4
Abstract
This article describes the techniques for measuring friction, namely, inclined-plane method; friction test methods using weights and pulleys; friction tests of shafts and capstans; other types of friction tests, including standards; microscale friction tests; and friction testing under well-lubricated conditions. The procedural considerations that should be addressed to ensure that valid data are derived from a friction test are discussed. The article explains friction testing geometries, the major considerations implicit in their use as well as friction test parameters, such as speed and load. It also demonstrates how to report friction data and how these data can be entered into a database.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002372
EISBN: 978-1-62708-193-1
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. This article focuses on measures to avoid or minimize crack initiation and fretting fatigue. It lists the factors that are known to influence the severity of fretting and discusses the variables that contribute to shear stresses. These variables include normal load, relative displacement (slip amplitude), and coefficient of friction. The article describes the general geometries and loading conditions for fretting fatigue. It presents the types of fretting fatigue tests and the effect of variables on fretting fatigue from different research test programs. The article also lists the general principles and practical methods for the abatement or elimination of fretting fatigue.