Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Fatigue crack growth rates
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006549
EISBN: 978-1-62708-210-5
Abstract
This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article discusses various models of fatigue crack growth (FCG) and the effects of alloy microstructure and composition on FCG.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003313
EISBN: 978-1-62708-176-4
Abstract
The separation of the fatigue process into crack initiation and propagation phases has been an important and useful advance in engineering. The combined approach of strain-control testing and the development fracture mechanics of fatigue crack growth rates is a key advance that allows better understanding and simulation of both crack nucleation and the subsequent crack growth mechanisms. This article reviews three basic types of fatigue properties: stress-life, strain life, and fracture mechanic crack growth.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002403
EISBN: 978-1-62708-193-1
Abstract
This article summarizes the key mechanical characteristics of various types of stainless steel, including ferritic, austenitic, martensitic, precipitation hardening, and duplex steels. Particular emphasis is on fracture properties and corrosion fatigue. The article tabulates typical room-temperature mechanical properties and fatigue endurance limits of stainless steels. Stainless steels are susceptible to embrittlement during thermal treatment or elevated-temperature service. The article discusses embrittlement in terms of sensitization, 475 deg C embrittlement, and sigma-phase embrittlement. It also describes the effect of environment on fatigue crack growth rate.