Skip Nav Destination
Close Modal
By
Arthur Reardon
By
Douglas R. McPherson, Suren B. Rao
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
Bending fatigue
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Fracture and Fractography of Tool Steels and Bearing Steels
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007029
EISBN: 978-1-62708-387-4
Abstract
This article describes some of the underlying factors of tool steel and bearing steel fractures and appearances. It also briefly introduces the general types of cold work and hot work tool steels and their typical performance requirements. This includes the importance of microstructural conditions achieved with powder metallurgy (PM) tool steels and the need for steel “cleanliness,” especially in preventing contact fatigue in bearings or bending fatigue in gears.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Book Chapter
518.0 Al-Mg Die-Casting Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006583
EISBN: 978-1-62708-210-5
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications of Al-Mg die-casting alloy 518.0. A figure presents die cast aluminum casting rotating-beam fatigue curve for 518.0-F alloy.
Book Chapter
850.0, 851.0, 852.0, and 853.0 Bearing Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006590
EISBN: 978-1-62708-210-5
Abstract
The aluminum-tin alloys 850.0, 851.0, 852.0, and 853.0 are specialized compositions displaying excellent bearing characteristics under moderate loads and with effective lubrication. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of these alloys. Permanent-mold aluminum casting rotating-beam fatigue curves for 850.0-T101, 850.0-T5, and 852.0-T5 alloys are also presented.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
Abstract
This article discusses failures in shafts such as connecting rods, which translate rotary motion to linear motion, and in piston rods, which translate the action of fluid power to linear motion. It describes the process of examining a failed shaft to guide the direction of failure investigation and corrective action. Fatigue failures in shafts, such as bending fatigue, torsional fatigue, contact fatigue, and axial fatigue, are reviewed. The article provides information on the brittle fracture, ductile fracture, distortion, and corrosion of shafts. Abrasive wear and adhesive wear of metal parts are also discussed. The article concludes with a discussion on the influence of metallurgical factors and fabrication practices on the fatigue properties of materials, as well as the effects of surface coatings.
Book Chapter
Mechanical Testing of Gears
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003327
EISBN: 978-1-62708-176-4
Abstract
Mechanical tests are performed to evaluate the durability of gears under load. Gear tooth failures occur in two distinct regions, namely, the tooth flank and the root fillet. This article describes the common failure modes such as scoring, wear, and pitting, on tooth flanks. Failures in root fillets are primarily due to bending fatigue but can be precipitated by sudden overloading (impact). The article presents contact stress computations for gear tooth flank and bending stress computations for root fillets. Specimen characterization is a critical part of any fatigue test program because it enables meaningful interpretation of the results. The article describes four areas of the characterizations: dimensional, surface finish/texture, metallurgical, and residual stress. The rolling contact fatigue test, single-tooth fatigue test, single-tooth single-overload test, and single-tooth impact test are some of the gear action simulating tests discussed in the article.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002400
EISBN: 978-1-62708-193-1
Abstract
Bending fatigue of carburized steel components is a result of cyclic mechanical loading. This article reviews the alloying and processing factors that influence the microstructures and bending fatigue performance of carburized steels. These include austenitic grain size, surface oxidation, retained austenite, subzero cooling, residual stresses, and shot peening. The article describes the analysis of bending fatigue behavior of the steels based on S-N curves that represents a stress-based approach to fatigue. It discusses the types of specimen used to evaluate bending fatigue in carburized steels. The stages of fatigue and fracture of the steels, namely crack initiation, stable crack propagation, and unstable crack propagation, are reviewed. The article analyzes the intergranular fracture at the prior-austenite grain boundaries of high-carbon case microstructures that dominates bending fatigue crack initiation and unstable crack propagation of direct-quenched carburized steels.
Book Chapter
AISI/SAE Alloy Steels: Atlas of Fractographs
Available to PurchaseBook: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000608
EISBN: 978-1-62708-181-8
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of AISI/SAE alloy steels (4xxx steels) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the brittle fracture, ductile fracture, impact fracture, fatigue fracture surface, reversed torsional fatigue fracture, transgranular cleavage fracture, rotating bending fatigue, tension-overload fracture, torsion-overload fracture, slip band crack, crack growth and crack initiation, crack nucleation, microstructure, hydrogen embrittlement, sulfide stress-corrosion failure, stress-corrosion cracking, and hitch post shaft failure of these steels. The components considered in the article include tail-rotor drive-pinion shafts, pinion gears, outboard-motor crankshafts, bull gears, diesel engine bearing cap bolts, splined shafts, aircraft horizontal tail-actuator shafts, bucket elevators, aircraft propellers, helicopter bolts, air flasks, tie rod ball studs, and spiral gears.