Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Brittleness
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006089
EISBN: 978-1-62708-175-7
Abstract
Milling of materials, whether hard and brittle or soft and ductile, is of prime interest and of economic importance to the powder metallurgy (PM) industry. This article discusses the principles of milling, milling parameters, and the powder characteristics required for the process. It discusses the changes in powder particle morphology that occur during milling of metal powders produced by various processes such as microforging, fracturing, agglomeration, and deagglomeration. The article also provides useful information on milling equipment such as tumbler ball mills, vibratory ball mills, attrition mills, and hammer and rod mills.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003274
EISBN: 978-1-62708-176-4
Abstract
Hardness characterizes the resistance of the ceramic to deformation, densification, displacement, and fracture. It is usually measured with conventional microindentation hardness machines using the Knoop or the Vickers diamond indenters. This article discusses the metrology issues of the Knoop and the Vickers hardness in ceramics. It explicates how to estimate fracture toughness from Vickers indentation cracking. The article also provides information on instrumented hardness testing and the Meyer law.