Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Demagnetization
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006468
EISBN: 978-1-62708-190-0
Abstract
Magnetic-particle inspection is a method of locating surface and subsurface discontinuities in ferromagnetic materials. This article discusses the applications and advantages and limitations of magnetic-particle inspection. It describes magnetic fields in terms of magnetized ring, magnetized bar, circular magnetization, longitudinal magnetization, and effects of flux direction. General applications, advantages, and limitations of the various magnetizing methods used in magnetic-particle inspection are listed in a table. The article discusses the items that must be considered in establishing a set of procedures for the magnetic-particle inspection of a specific part: type of current, type of magnetic particles, method of magnetization, direction of magnetization, magnitude of applied current, and equipment. It concludes with a discussion on demagnetization after magnetic-particle inspection.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006324
EISBN: 978-1-62708-179-5
Abstract
This article discusses the influence of microstructure and chemical composition on the physical properties of cast iron. The physical properties include density, thermal expansion, thermal conductivity, specific heat, electrical conductivity, magnetic properties, and acoustic properties. The article describes the properties of liquid iron in terms of surface energy, contact angles, and viscosity. The conductive properties such as thermal and electrical conductivity, of the main metallographic phases present in cast iron are presented in a table. The article discusses the magnetic properties of cast iron in terms of magnetic intensity, magnetic induction, magnetic permeability, remanent magnetism, coercive force, and hysteresis loss. It concludes with a discussion on the acoustic properties of cast iron.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006229
EISBN: 978-1-62708-163-4
Abstract
In some phase diagrams, the appearance of several reactions is the result of the presence of intermediate phases. These are phases whose chemical compositions are intermediate between two pure metals, and whose crystalline structures are different from those of the pure metals. This article describes the order-disorder transformation that typically occurs on cooling from a disordered solid solution to an ordered phase. It provides a table that lists selected superlattice structures and alloy phases that order according to each superlattice. The article informs that spinodal decomposition has been particularly useful in the production of permanent magnet materials, because the morphologies favor high magnetic coercivities. It also describes the theory of spinodal decomposition with a simple binary phase diagram.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003232
EISBN: 978-1-62708-199-3
Abstract
Magnetic-particle inspection is a nondestructive testing technique used to locate surface and subsurface discontinuities in ferromagnetic materials. Beginning with an overview of the applications, advantages, and limitations of magnetic-particle inspection, this article provides a detailed account of the portable power sources available for magnetization, and the different ways of generating magnetic fields using yokes, coils, central conductors, prod contacts, direct-contact, and induced current. In addition, the article discusses the characteristics and classification, and properties of magnetic particles and suspended liquids. Finally, the article outlines the types of discontinuities (surface and subsurface) that can be identified by magnetic-particle inspection and the importance of demagnetization after inspection.