Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Electrochemical polarization
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003592
EISBN: 978-1-62708-182-5
Abstract
Electrode potential is a key parameter in the thermodynamic and kinetic processes that drive aqueous corrosion. This article discusses the complexities associated with measuring electrode potential and explains where and how to use reference electrodes to improve measurement accuracy. It describes a three-electrode approach that compensates for measurement error stemming from nonequilibrium conditions. It also examines electrode materials and behaviors and offers insights on selection and operating conditions.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003607
EISBN: 978-1-62708-182-5
Abstract
This article describes the various factors that affect the extent of corrosion resulting from galvanic coupling. The factors include galvanic series, polarization behavior, and geometric relationship of metals and alloys. The article briefly discusses the various modes of attack that lead to galvanic corrosion of anodic members. It also explains the three electrochemical techniques of screening tests for predicting galvanic corrosion. The electrochemical techniques comprise of potential measurements, current measurements, and polarization measurements. The article provides a detailed discussion on the performance of alloy groupings. It concludes with information on various control methods that reduce or eliminate galvanic-corrosion effects.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003583
EISBN: 978-1-62708-182-5
Abstract
This article provides a general introduction to the kinetics of aqueous corrosion with an emphasis on electrochemical principles. It describes the thermodynamic basis for corrosion by determining the equilibrium potentials of electrochemical reactions from the Nernst equation. A corrosion process can be controlled by the electronic conductivity of passive films when the cathodic reaction occurs on the surface of the film and by activation control of corrosion. Passivation becomes thermodynamically possible when the corrosion potential exceeds the potential corresponding to the equilibrium between a metal and one of its oxides/hydroxides. The article schematically illustrates a current-potential or polarization curve for an anodic process.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003585
EISBN: 978-1-62708-182-5
Abstract
This article reviews the types of passivity and presents tactics that employ passivity to control corrosion. Thermodynamics provides a guide to the conditions under which passivation becomes possible. A valuable guide to thermodynamics is the potential-pH diagram and the Pourbaix diagram. The article presents a potential-pH diagram for the iron-water system and an illustration of an idealized anodic polarization curve for a metal surface, which serves as a basis for describing the kinetics of passivation. It discusses five properties of passive films: thickness, composition, structure, electronic properties, and mechanical properties. The article outlines three possible processes that can form passive films: direct film formation, dissolution precipitation, and anodic oxidation of metal ions in solution. It describes the breakdown of the passive film using various models and highlighting the effect of alloy composition and structure.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003629
EISBN: 978-1-62708-182-5
Abstract
This article describes the methods of wear measurements and a model of corrosive wear in mill atmospheres. It explains the polarization curves of pyrrhotite and high-carbon low-alloy steel in a quartzite slurry with examples. The surfaces of pyrrhotite in contact with mild steel or stainless steel affected by galvanic interaction are discussed. The article contains a table that lists the results of laboratory marked ball wear tests for three types of steel balls in wet grinding of magnetic taconite. It also provides information on the mechanism of electrochemical interaction and relative significance of corrosion and abrasion in wear. Galvanic interactions in multielectrode systems are reviewed. The article presents a case history on the material selection for grinding balls to minimize corrosion loss and the adverse effect on flotation.