Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 20
Electrical conductivity
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
Abstract
This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006593
EISBN: 978-1-62708-210-5
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006520
EISBN: 978-1-62708-207-5
Abstract
This article summarizes a typical solution and aging heat treatments of 2xxx (Al-Cu), 6xxx (Al-Mg-Si), and 7xxx (Al-Zn-Mg) wrought alloys. It discusses the general aging characteristics and the effects of reheating of aluminum alloys. Typical examples of hardness and conductivity values for various aluminum alloy tempers are listed in a table. The article also describes the age hardening of Al-Cu (Mg) alloys, Al-Mg-Si alloys, and Zn-Mg-(Cu) aluminum alloys.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006450
EISBN: 978-1-62708-190-0
Abstract
Eddy-current inspection is based on the principles of electromagnetic induction and is used to identify or differentiate among a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. This article discusses the advantages and limitations of eddy-current inspection, as well as the development of the eddy-current inspection process. It reviews the principal operating variables encountered in eddy-current inspection: coil impedance, electrical conductivity, magnetic permeability, lift-off and fill factors, edge effect, and skin effect. The article illustrates some of the principal impedance concepts that are fundamental to understanding of and effective application of eddy-current inspection. It discusses various types of eddy-current instruments, such as the resistor and single-coil system, bridge unbalance system, induction bridge system, and through transmission system. The article concludes with a discussion on the inspection of aircraft structural and engine components.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006324
EISBN: 978-1-62708-179-5
Abstract
This article discusses the influence of microstructure and chemical composition on the physical properties of cast iron. The physical properties include density, thermal expansion, thermal conductivity, specific heat, electrical conductivity, magnetic properties, and acoustic properties. The article describes the properties of liquid iron in terms of surface energy, contact angles, and viscosity. The conductive properties such as thermal and electrical conductivity, of the main metallographic phases present in cast iron are presented in a table. The article discusses the magnetic properties of cast iron in terms of magnetic intensity, magnetic induction, magnetic permeability, remanent magnetism, coercive force, and hysteresis loss. It concludes with a discussion on the acoustic properties of cast iron.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
Abstract
Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality assurance of heat treated aluminum products is effectively used in conjunction with the measurement of surface electrical conductivity. This article provides a detailed discussion of the error sources in eddy-current conductivity measurements. It also presents useful information on the variation of electrical conductivity of alloy 2024 samples as a function of aging time at different isothermal holding temperatures.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005879
EISBN: 978-1-62708-167-2
Abstract
Induction heating computations deal with a multiphysics problem containing analysis of several coupled physical fields such as electromagnetic, temperature, mechanical, and metallurgical. In order to solve coupled electromagnetic-temperature field problems, it is necessary to develop suitable algorithms and numerical procedures, which make it possible to deal with these nonlinear coupled problems. This article focuses on the most common approaches to coupled electromagnetic and heat transfer problems, namely, weak-, quasi-, and hard-coupled formulations.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005523
EISBN: 978-1-62708-197-9
Abstract
This article presents typical values for the most used types of thermophysical property data that are needed for processing and modeling of solidification and casting processes. It describes methods to determine thermophysical properties, such as specific heat capacity and enthalpy of transformation; enthalpy of melting; solidus and liquidus temperatures; coefficient of thermal expansion; density; surface tension; viscosity; electrical and thermal conductivity; and emissivity.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005445
EISBN: 978-1-62708-196-2
Abstract
This article contains a table that lists the electrical conductivity and resistivity of selected metals, alloys, and materials at ambient temperature. These include aluminum and aluminum alloys; copper and copper alloys; electrical heating alloys; instrument and control alloys; relay steels and alloys; thermostat metals; electrical contact materials; and magnetically soft materials.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005240
EISBN: 978-1-62708-187-0
Abstract
There are several main sources of thermophysical property data that provide the most authoritative and comprehensive compilations of critically and systematically evaluated data that are presently available. This article provides thermophysical property data to assist in the materials properties selection for the simulation of casting processes. The measurements of thermophysical property are difficult due to high temperatures and the reactivity of some alloys. The article discusses the strategies adopted to minimize the effects of high temperatures and reactivity of alloys. It presents the thermophysical properties of pure metals and some commercial alloys and tabulates the enthalpy of fusion and solidus and liquidus temperatures for various alloys of commercial interest. The article also lists the density, thermal conductivity, surface tension, and viscosity for some commercial alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005341
EISBN: 978-1-62708-187-0
Abstract
The commonly used nondestructive testing of cast products include liquid penetrant inspection, radiographic inspection, fluoroscopic inspection and automated defect recognition, ultrasonic inspection, eddy current inspection, process-controlled resonant testing (PCRT), leak test, and electrical conductivity measurements. This article summarizes the application of these nondestructive tests to castings. It also tabulates a partial list of automotive part types and materials amenable to PCRT and lists the potential limitations to the use of PCRT.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003770
EISBN: 978-1-62708-177-1
Abstract
The two major types of beryllium-containing alloys are copper-berylliums and nickel-berylliums. The most widely used beryllium-containing alloys are wrought copper-berylliums, which provide good strength while retaining useful levels of electrical and thermal conductivity. This article provides information on the specimen preparation procedures, macroexamination, microexamination, and microstructures of beryllium, copper-beryllium alloys, as well as nickel-beryllium alloys. It also discusses health and safety measures associated with the specimen preparation of beryllium and beryllium-containing alloys.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003711
EISBN: 978-1-62708-182-5
Abstract
This article presents an overview of the science and engineering of materials along with suitable definitions, descriptions, and examples for better understanding for corrosionists with limited field knowledge. It begins with a detailed description of various categories of engineering materials and moves into the discussion of physical properties of materials, such as the phases, strength, conductivity, and wear. The article describes the methods used in the fabrication of engineering materials and summarizes the materials and their properties in a tabular form. The article concludes with information on material design, materials applications, and materials failure analysis.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003583
EISBN: 978-1-62708-182-5
Abstract
This article provides a general introduction to the kinetics of aqueous corrosion with an emphasis on electrochemical principles. It describes the thermodynamic basis for corrosion by determining the equilibrium potentials of electrochemical reactions from the Nernst equation. A corrosion process can be controlled by the electronic conductivity of passive films when the cathodic reaction occurs on the surface of the film and by activation control of corrosion. Passivation becomes thermodynamically possible when the corrosion potential exceeds the potential corresponding to the equilibrium between a metal and one of its oxides/hydroxides. The article schematically illustrates a current-potential or polarization curve for an anodic process.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003234
EISBN: 978-1-62708-199-3
Abstract
Eddy-current inspection is a nondestructive evaluation method based on the principles of electromagnetic induction. Eddy-current methods are used to identify or differentiate a wide variety of physical, structural, and metallurgical conditions in electrically conductive ferromagnetic and nonferromagnetic metals and metal parts. Giving a brief introduction on the uses of eddy-current inspection, this article discusses the operating principles and the principal operating variables encountered in eddy-current inspection, including coil impedance, electrical conductivity, magnetic permeability, lift-off and fill factors, edge effect, and skin effect. It further describes different aspects of eddy current testing such as the selection of inspection frequencies and the types and configurations of inspection coils. The article also deals with the eddy current instrumentation and the discontinuities that are detectable by eddy-current methods.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003082
EISBN: 978-1-62708-199-3
Abstract
This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented include density, linear thermal expansion, thermal conductivity, electrical conductivity, resistivity, and approximate melting temperature. The tables also present approximate equivalent hardness numbers for austenitic steels, nonaustenitic steels, austenitic stainless steel sheet, wrought aluminum products, wrought copper, and cartridge brass. The article lists conversion factors classified according to the quantity/property of interest.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003134
EISBN: 978-1-62708-199-3
Abstract
Copper alloy castings are used in applications that require superior corrosion resistance, high thermal or electrical conductivity, good bearing surface qualities, or other special properties. Discussing the types and compositions of copper alloy used for casting, this article describes the major factors considered in alloy selection for casting, including raw material cost, castability, machinability, and the bearing and wear properties. It also provides information on the cost of the final product.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001436
EISBN: 978-1-62708-173-3
Abstract
Aluminum and its alloys can be joined by as many or more methods than any other metal. This article discusses the properties of aluminum, namely hydrogen solubility, electrical conductivity, and thermal characteristics. It analyses the primary factors commonly considered when selecting a welding filler alloy. These include ease of welding or freedom from cracking, tensile or shear strength of the weld, weld ductility, service temperature, corrosion resistance, and color match between the weld and base alloy after anodizing. The article provides a detailed description of gas-shielded arc welding processes for welding of aluminum alloys and also reviews other welding processes such as oxyfuel gas welding and laser-beam welding.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001778
EISBN: 978-1-62708-178-8
Abstract
Ion chromatography (IC) is an analytical technique that uses columns packed with ion exchange resins to separate ions in aqueous solutions and dynamically elute them to a detector. This article provides information on the different modes of detection, namely, eluent-suppressed conductivity detection, single-column ion chromatography with conductivity detection, ion chromatography with spectrophotometric detection, and amperometric electrochemical detection. It describes the modes of separation techniques in IC and reversed-phase IC. The article discusses the detection capabilities of IC, the procedures for preparing solid and liquid samples, as well as the applications of IC.