Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Deformation-texture evolution modeling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005418
EISBN: 978-1-62708-196-2
Abstract
Self-consistent models are a particular class of models in continuum micromechanics, that is, the field concerned with making predictions of the properties and evolution of aggregates whose single-crystal deformation behavior is known. This article provides information on the measurement and representation of textures as well as prediction of texture evolution in single-phase materials and two-phase aggregates.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005400
EISBN: 978-1-62708-196-2
Abstract
This article presents the Schmid's law that describes the response of crystal structures to loading. It describes the Taylor model to calculate the uniaxial yield stress of an isotropic face-centered cubic aggregate in terms of critical resolved shear stress. The article discusses the stress-based approach of the Bishop and Hill procedure to directly find stress states that could simultaneously operate at least five independent slip systems. It presents ways to find isostress or lower-bound yield loci for sheets having single-crystal orientation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005424
EISBN: 978-1-62708-196-2
Abstract
This article provides an explanation on how crystal plasticity is implemented within finite element formulations by the use of physical length scales: crystal scale and continuum scale. It provides theoretical formulations for kinematic framework for deforming crystals and polycrystals, elastic and plastic behaviors of single crystals, refinements to the single-crystal constitutive, and crystal-scale finite-element. The article also presents examples that illustrate the capabilities of the formulations at the length scales.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
Abstract
The modeling and simulation of texture evolution for titanium alloys is often tightly coupled to microstructure evolution. This article focuses on a number of problems for titanium alloys in which such coupling is critical in the development of quantitative models. It discusses the phase equilibria, crystallography, and deformation behavior of titanium and titanium alloys. The article describes the modeling and simulation of recrystallization and grain growth of single-phase beta and single-phase alpha titanium. The deformation- and transformation-texture evolution of two-phase (alpha/beta) titanium alloys are also discussed.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005408
EISBN: 978-1-62708-196-2
Abstract
This article explores the potential of through-process simulations of the development of microstructure, texture, and resulting properties during the thermomechanical processing of Al-Mn-Mg alloys, starting from the as-cast ingot to final-gage sheet. It provides an introduction of the thermomechanical production of aluminum sheet and, in particular, highlights the main effects governing the evolution of microstructure and texture. The simulation tools used to model the evolution of microchemistry, microstructure, and texture upon deformation and recrystallization of aluminum alloys are described. The article discusses the recrystallization behavior of alloy AA 3104 during the interstand times in between two consecutive hot rolling passes with the help of combined microstructure models.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005168
EISBN: 978-1-62708-186-3
Abstract
This article discusses the numerical simulation of the forming of aluminum alloy sheet metals. The macroscopic and microscopic aspects of the plastic behavior of aluminum alloys are reviewed. The article presents constitutive equations suitable for the description of aluminum alloy sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures for both continuum and crystal-plasticity mechanics are also discussed. The article also provides various examples that illustrate the simulation of aluminum sheet forming.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
Abstract
This article reviews the general aspects of microstructure evolution during thermomechanical processing. The effect of thermomechanical processing on microstructure evolution is summarized to provide insight into the aspect of process design. The article provides information on hot working and key processes that control microstructure evolution: dynamic recovery, static recovery, recrystallization, and grain growth. Some of the key phenomenological descriptions of plastic flow and microstructure evolution are also summarized. The article concludes with a discussion on the modeling of microstructure evolution.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
Abstract
This article outlines several polycrystal formulations commonly applied for the simulation of plastic deformation and the prediction of deformation texture. It discusses the crystals of cubic and hexagonal symmetry that constitute the majority of the metallic aggregates used in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength of the homogeneous effective medium (HEM). The article analyzes the anisotropy predictions of rolled face-centered-cubic and body centered-cubic sheets and presents simulations of the axial deformation of hexagonal-close-packed zirconium. The applications of polycrystal constitutive models to the simulation of complex forming operations, through the use of the finite element method, are also presented.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003744
EISBN: 978-1-62708-177-1
Abstract
This article describes the mechanisms involved in creating texture for various metal-fabrication processes, namely, solidification, deformation, recrystallization and grain growth, thin-film deposition, and imposition of external magnetic fields. It discusses two experimental and analytical approaches for experimental determination of texture: one using classical diffraction and pole figure measurement techniques and the other using individual orientation measurements. The article also provides information on microtexture, grain-boundary character, and texture gradients. It concludes with information on texture evolution through modeling.