Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Pourbaix diagrams
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006522
EISBN: 978-1-62708-207-5
Abstract
This article discusses the properties of aluminum surface and the applications of aluminum alloys. It explains the effects of trace elements on aluminum alloys. The article considers microstructural development of aluminum in terms of the surface and explains how it will impact corrosion resistance and surface treatment. It describes the thermodynamics of equilibrium oxidation processes and non-equilibrium corrosion processes. The article provides a discussion on aluminum oxidation under atmospheric and dynamic conditions. It presents the potential/pH (Pourbaix) diagram for aluminum under atmospheric and dynamic conditions. The article also explains the polarization effects during the formation of stable aluminum oxide under dynamic conditions. It concludes with information on the designation system for aluminum finishes.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003606
EISBN: 978-1-62708-182-5
Abstract
This article discusses the elements necessary for a galvanic cell operation. Detailed information on the possible corrosion reaction as a function of aqueous electrolyte concentration and pH, in the presence of certain ions, are provided using Pourbaix diagrams. A variety of atmospheric factors, climatic conditions, and air-chemical pollutants that determine the corrosiveness of the atmosphere and contribute to the metal corrosion process are discussed. The article reviews the phenomenon of precipitation runoff on the corroded metal surface and the corrosive microbial effect on metals. It describes the thermodynamics of atmospheric corrosion and models for predicting the corrosion damage of metals. The article concludes with information on the various trends in atmospheric corrosion research and methods for the corrosion processes.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003580
EISBN: 978-1-62708-182-5
Abstract
A potential pH diagram is a graphical representation of the relations, derived from the Nernst equation, between the pH and the equilibrium potentials (E) of the most probable electrochemical reactions occurring in a solution containing a specific element. This article describes three types of reactions for calculation and construction of E-pH diagrams: electrochemical reactions of pure charge (electron) transfer; reactions involving both electron and solvated proton transfer; and acid-base reactions of pure solvated proton transfer. It illustrates the practical use of E-pH diagrams for temperature aqueous solutions and adsorbed species and in prediction of corrosion of nickel and copper.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003585
EISBN: 978-1-62708-182-5
Abstract
This article reviews the types of passivity and presents tactics that employ passivity to control corrosion. Thermodynamics provides a guide to the conditions under which passivation becomes possible. A valuable guide to thermodynamics is the potential-pH diagram and the Pourbaix diagram. The article presents a potential-pH diagram for the iron-water system and an illustration of an idealized anodic polarization curve for a metal surface, which serves as a basis for describing the kinetics of passivation. It discusses five properties of passive films: thickness, composition, structure, electronic properties, and mechanical properties. The article outlines three possible processes that can form passive films: direct film formation, dissolution precipitation, and anodic oxidation of metal ions in solution. It describes the breakdown of the passive film using various models and highlighting the effect of alloy composition and structure.