Skip Nav Destination
Close Modal
By
Lauralice C.F. Canale, Rosa L. Simencio Otero, George E. Totten, Xinmin Luo
By
Jose M. Perez, Jr., Jeffrey Hinkley
By
Jessica Román-Kustas, Raymond S. Fuentes, Curtis D. Mowry
By
Robert Sanders, James Staley
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 190
Chemical composition
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 30 April 2026
DOI: 10.31399/asm.hb.v21.a0007043
EISBN: 978-1-62708-489-5
Abstract
This article describes glass fibers derived from silica, alumina, and calcium oxide compositions. The section on general-purpose glass fibers provides an in-depth discussion of melt properties, fiber properties, methods of manufacture, and significant product types. The article discusses special-purpose glass fibers and reviews compositions, manufacture, properties, and applications to an extent commensurate with their commercial use. It addresses the generic glass melting and fiber forming process, including the viscosity-versus-temperature profile required for general-purpose E-glass fibers with and without boron. The article also discusses continuous multiend or single-end roving, woven roving (or noncrimp fabrics), fiberglass mats, chopped strands, and yarns for textile applications.
Book
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.9781627083874
EISBN: 978-1-62708-387-4
Book
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.9781627084505
EISBN: 978-1-62708-450-5
Book Chapter
Petroleum Oil Quenchants
Available to PurchaseSeries: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007002
EISBN: 978-1-62708-450-5
Abstract
In this article, an in-depth overview of petroleum quenching oils is provided, including oil composition, use, mechanism of the oil quenching processes, oil degradation, toxicology and safety, and quenching bath maintenance.
Book
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Book Chapter
Effects of Composition, Processing, and Structure on Properties of Engineering Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
Abstract
This article provides practical information and data on property development in engineering plastics. It discusses the effects of composition on submolecular and higher-order structure and the influence of plasticizers, additives, and blowing agents. It examines stress-strain curves corresponding to soft-and-weak, soft-and-tough, hard-and-brittle, and hard-and-tough plastics and temperature-modulus plots representative of polymers with different degrees of crystallinity, cross-linking, and polarity. It explains how viscosity varies with shear rate in polymer melts and how processes align with various regions of the viscosity curve. It discusses the concept of shear sensitivity, the nature of viscoelastic properties, and the electrical, chemical, and optical properties of different plastics. It also reviews plastic processing operations, including extrusion, injection molding, and thermoforming, and addresses related considerations such as melt viscosity and melt strength, crystallization, orientation, die swell, melt fracture, shrinkage, molded-in stress, and polymer degradation.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
Abstract
This article discusses the thermal properties of engineering plastics and elastomers with respect to chemical composition, chain configuration, and base polymer conformation as determined by thermal analysis. It describes the processing of base polymers with or without additives and their response to chemical, physical, and mechanical stresses whether as an unfilled, shaped article or as a component of a composite structure. It summarizes the basic thermal properties of thermoplastics and thermosets, including thermal conductivity, temperature resistance, thermal expansion, specific heat, and glass transition temperature. It also provides information on polyimide and bismaleimide resin systems. Representative examples of different types of engineering thermoplastics are discussed primarily in terms of structure and thermal properties.
Book Chapter
Solid Analysis by Mass Spectrometry
Available to PurchaseSeries: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006651
EISBN: 978-1-62708-213-6
Abstract
This article endeavors to familiarize the reader with a selection of different ionization designs and instrument components to provide knowledge for sorting the various analytical strategies in the field of solid analysis by mass spectrometry (MS). It begins with a description of the general principles of MS. This is followed by sections providing a basic understanding of instrumentation and discussing the operating requirements as well as practical considerations related to solid sample analysis by MS. Instrumentation discussed include the triple quadrupole mass spectrometer and the time-of-flight mass spectrometer. Inductively coupled plasma and thermal ionization MS provide atomic information, and direct analysis in real-time and matrix-assisted laser-desorption ionization MS are used to analyze molecular compositions. The article describes various factors pertinent to ionization methods, namely glow discharge mass spectrometry and secondary ion mass spectrometry. It concludes with a section on various examples of applications and interpretation of MS for various materials.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006639
EISBN: 978-1-62708-213-6
Abstract
This article focuses on the principles and applications of X-ray photoelectron spectroscopy (XPS) for the analysis of elemental and chemical composition. The discussion covers the nomenclature, instruments, and specimen preparation process of XPS. Some of the factors pertinent to the calibration of materials for accurate measurements using XPS are provided, along with some aspects of the accuracy in quantitative analysis by XPS. In addition, the article presents examples of how XPS data can be used to solve problems with surface interactions.
Book Chapter
2 xxx Aluminum Alloy Datasheets
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006594
EISBN: 978-1-62708-210-5
Abstract
This article illustrates the relationships among commonly used 2xxx series alloys. It contains tables that list values for composition limits of aluminum-lithium alloys, and aerospace alloys and their temper conditions according to primary design requirements.
Book Chapter
7349 Extrusion Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006745
EISBN: 978-1-62708-210-5
Abstract
The extrusion alloy 7349 was developed by Pechiney and introduced in 1994 to provide higher strength properties than incumbent 7x75 and 7150 alloys. This datasheet provides information on composition limits and processing effects on mechanical properties of this aluminum alloy. Performance comparisons of alloys 7349-T6511 with 7175-T76511 and 7349-T7651 with 7175-T77511 are also illustrated.
Book Chapter
6056 Extrusion and Sheet Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006715
EISBN: 978-1-62708-210-5
Abstract
The extrusion and sheet alloy 6056 was developed to provide weldable thin extrusions with an excellent balance between high strength and corrosion resistance. This datasheet provides information on composition limits, processing effects on mechanical properties, and applications of this 6xxx series alloy. It provides a material performance comparison of aluminum alloys 6056-T6511 with 2024-T3511 and 6056-T8511 with 2024-T3511.
Book Chapter
2196 and 2296 Aerospace Extrusion Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006609
EISBN: 978-1-62708-210-5
Abstract
Alloy 2196 is a higher Li-containing alloy registered in 2000 for various aircraft extrusion parts. This datasheet provides information on composition limits and applications of alloy 2196 and 2296 as well as processing effects on mechanical properties of 2196-T8511 extrusions. A performance comparison of 2196-T8511 extrusion with alloy 2024 is also presented.
Book Chapter
7085 Thick plate and forging alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006739
EISBN: 978-1-62708-210-5
Abstract
This datasheet provides information on composition limits, fabrication characteristics, processing effects on physical and mechanical properties, and application performance of thick plate and forging alloy 7085. It presents the specified minimum strength and fracture properties for plate, die, and hand forgings. The datasheet provides a comparison of the strength, fracture toughness, and fatigue crack growth resistance of alloy 7085 plate with those of the legacy plate alloy 7050. It shows tensile yield and ultimate strength at elevated temperature for various temperatures and exposure times for 7085-T7452 die forgings.
Book Chapter
2198 Fuselage Sheet
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006610
EISBN: 978-1-62708-210-5
Abstract
Alloy 2198 is an Al-Cu-Li alloy that is used in combination with 2196-T8 stringers for the fuselage skins of the Bombardier C-Series. This datasheet provides information on composition limits of the alloy 2198 and provides a performance comparison of 2198-T8 and 2024-T351 alloys.
Book Chapter
7039 Armor Plate
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006730
EISBN: 978-1-62708-210-5
Abstract
This datasheet provides information on composition limits, fabrication characteristics, processing effects on physical and mechanical properties, and applications of aluminum alloy 7039.
Book Chapter
7255 High-Strength, Fatigue-Resistant Plate
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006744
EISBN: 978-1-62708-210-5
Abstract
This datasheet provides information on composition limits for aluminum alloy 7255, with emphasis on the minimum static properties of aluminum alloy 7255 plate and fracture toughness of aluminum alloy 7255-T7751. Fatigue crack growth resistance of alloy 7255 plate is compared with those of legacy alloy 7055 plate.
Book Chapter
A History of Wrought Aluminum Alloys and Applications
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
Abstract
The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different series of wrought aluminum alloys (1xxx to 8xxx) and discusses their applications based on the alloying system introduced by the Aluminum Association.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006546
EISBN: 978-1-62708-210-5
Abstract
Aluminum and its alloys are highly corrosion resistant, protected by a self-healing oxide film that effectively passivates the underlying surface. This article examines the various processes by which the protective layer can be breached and the types of corrosion that can occur. It describes pitting, galvanic, and atmospheric corrosion as well as stress-corrosion cracking, corrosion fatigue, and erosion corrosion. It also covers intergranular, exfoliation, filiform, deposition, and crevice corrosion and special cases of corrosion in soils, seawater, and automotive coolant systems. The article provides an extensive amount of data as well as information on coatings, claddings, and cathodic protection methods; the effects of composition, microstructure, and surface treatments; and the compatibility of aluminum with food and various household and industrial chemicals.
Book Chapter
1 xxx Aluminum Alloy Datasheets
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006552
EISBN: 978-1-62708-210-5
Abstract
This article contains tables that provide values for compositions and physical and mechanical properties of 1xxx series aluminum alloys. Emphasis is placed on highly refined aluminum (1199) and high-purity aluminum (1060). Examples of common 1xxx series aluminum alloys specified in products standards are also presented. A figure illustrates the effect of purity on strength and hardness of unalloyed aluminum.
1