Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 61
Steelmaking
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006485
EISBN: 978-1-62708-207-5
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling, and the manufacture of aluminum and aluminum alloy products. This article discusses various ingot forms, such as remelt ingot, billets, ingots for rolling, fabricating ingot, and particle ingot and powder. It describes the molten metal processing and ingot casting process in terms of open-mold casting and direct chill process. The article examines the continuous processes that provide commercial alternatives to conventional ingot casting. It reviews the postsolidification processes in terms of stress relief, homogenization, and scalping. The article concludes with a discussion on safety limited to ingot casting.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006309
EISBN: 978-1-62708-179-5
Abstract
Malleable iron is a type of cast iron that has most of its carbon in the form of irregularly shaped graphite nodules instead of flakes, as in gray iron, or small graphite spherulites, as in ductile iron. This article discusses the production of malleable iron based on the metallurgical criteria: to produce solidified white iron throughout the section thickness; and to produce the desired graphite distribution (nodule count) upon annealing. It describes the induction heating and quenching or flame heating and quenching for surface hardening of fully pearlitic malleable iron. Laser and electron beam techniques also have been used for hardening selected areas on the surface of pearlitic and ferritic malleable iron castings that are free from decarburization.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005941
EISBN: 978-1-62708-168-9
Abstract
This article presents an overview of common heat treating problems arising due to poor part design, material incapabilities, difficult engineering requirements, incorrect heat treatment practice, and nonuniform quenching with emphasis on distortion and cracking of quenched and tempered steels. It provides useful information on selection of steels for heat treatment, and discusses the causes of residual stresses, distortion (size and shape), and size changes due to hardening and tempering. The article elucidates the control techniques for such distortions. It describes the importance of decarburizing, and discusses the problems caused by heating, cracking, quenching, typical steel grades, and design.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005991
EISBN: 978-1-62708-166-5
Abstract
Heat treating involves the use of fuel gases for heating and gases in the furnace atmosphere. This article describes the hazards associated with furnace atmospheres and the related safety considerations. It discusses the effect of fuel on combustion efficiency. The article also contains tables that provide information on the physical, thermal and combustion properties of common gases and liquids, and the heat content of various gases.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005992
EISBN: 978-1-62708-166-5
Abstract
Heating time and holding time refer, respectively, to the time required to bring a part to temperature and the time a part is held at the required heat-treatment temperature. This article provides information on heating times and holding times with different types of furnace systems during steel hardening and tempering.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005931
EISBN: 978-1-62708-166-5
Abstract
Heat treating furnaces require different control systems and integration for achieving optimum technical results and enabling safe operation. This article focuses on atmosphere furnaces, with some coverage on controls for vacuum furnaces. Heat treating operations require reliable monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control systems must be able to adjust the flow of gases for process optimization. The operator interface of a furnace-control system displays critical information such as the furnace temperature, atmosphere status, alarms, electronic chart recorders, recipe, and maintenance. A supervisory control and data-acquisition (SCADA) system is used to monitor, collect, and store data from multiple pieces of equipment.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005947
EISBN: 978-1-62708-166-5
Abstract
Dimensional and shape changes caused by heat treatment have been the subject of scientific and industrial research for a very long time. This article provides an overview of the complexity of distortion and stress generation during heat treatment of steels. It discusses the measurement and evaluation of dimensional and shape changes with examples. The article describes the mechanisms at work during the generation of stresses and distortion during heat treatment. A hypothetical experiment with increasing application to real life is used to develop a systematization of unavoidable size and shape changes. The article also provides information on the carriers of distortion potential that cause measureable size and shape changes.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005993
EISBN: 978-1-62708-166-5
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. With detailed explanations and dimensioned drawings, the article demonstrates how to set up and solve real-world problems, accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation. The article also includes reference data and provides closed-form solutions for common heat-transfer applications such as insulated pipes, cooling fins, radiation shields, and composite structures and configurations.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005940
EISBN: 978-1-62708-166-5
Abstract
This article presents the three levels of investigations of distortion engineering. On Level 1, the parameters and variables influencing distortion in every manufacturing step must be identified. More than 200 parameters can affect distortion. The design of experiments approach allows for the investigation of larger numbers of parameters by a limited number of samples, and can be structured into system analysis, test strategy, test procedure, and test evaluation. Level 2 focuses on understanding the distortion mechanisms by using the concept of distortion potential and its carriers. Distortion engineering aims to compensate distortion using the so-called compensation potential (Level 3). Level 3 discusses the measures to improve homogeneity, and respectively the symmetry, of the carriers of the distortion potential. The article also discusses the compensation of the resulting size and shape changes of the existing asymmetries by well-directed insertions of additional inhomogeneity/asymmetries in one or more of the distributions of the carriers.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005944
EISBN: 978-1-62708-166-5
Abstract
The use of gases or molten salts as the quenchant for steel parts is commonly limited to the quenching of high-alloy steel or the carbonizing quenching of low-alloy steel. This article reviews the quenching process of steels with molten metals (quenchant) such as molten lead, molten bismuth, and molten sodium. It also contains tables that list the physical properties of lead, bismuth, sodium, and molten sodium.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005957
EISBN: 978-1-62708-166-5
Abstract
Furnaces are one of the most versatile types of industrial appliances that span many different areas of use. This article discusses the classification of various furnaces used in heat treating based on the mode of operation (batch-type furnaces and continuous-type furnaces), application, heating method, mode of heat transfer, type of materials handling system, and mode of waste heat recovery (recuperation and regeneration). It provides information on uniform temperature distribution, the general requirements and selection criteria for insulation materials, as well as the basic safety requirements of these furnaces.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005966
EISBN: 978-1-62708-166-5
Abstract
This article focuses on the mechanisms, models, prevention, correction, and effects associated with decarburization inherited from semi-finished product processing prior to induction heating. It discusses the diffusion of carbon in austenitic iron, which has a face-centered cubic crystal structure that provides an interstitial path for the migration of the relatively small carbon atoms. The article describes the evolution of steel microstructure with progressive decarburization (in air) to a steady-state carbon gradient using an iron-iron carbide phase diagram. It provides useful information on the impact of alloying on vulnerability to decarburization, and the impact of decarburization on the mechanical properties of steels and cast irons. The article also describes the technological operations that potentially cause decarburization and the practical implications for induction hardening.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005968
EISBN: 978-1-62708-166-5
Abstract
The heat treatment of steel involves a number of processes (such as stress relieving, normalizing, annealing etc) to condition the microstructure and obtain desired properties. This article discusses typical heat treating process control procedures for carbon and low-alloy steels, as well as the importance of time, and temperature control in heat treatment. Temperature Uniformity Survey, a testing procedure intended to map variations in temperature throughout the furnace work zone, helps in precise control of temperature. The article focuses on the measuring instruments used to determine gas pressure, vacuum level, gas flow, and gas composition. It focuses on their measuring quenchant characteristics, including bulk temperature, viscosity, composition, and cooling efficiency. The article describes the procedures for detecting variability in the incoming product. It presents, through an example, the general application of design of experiments techniques to locate and tune vital process parameters. The devices used in the control process of mechanical components are also reviewed.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005983
EISBN: 978-1-62708-166-5
Abstract
This article describes the effects of furnace atmospheric elements on steels. These elements are air, water vapor, molecular nitrogen, carbon dioxide, and carbon monoxide. The article provides useful information on six groups of commercially important prepared atmospheres classified by the American Gas Association on the basis of method of preparation or on the original constituents employed. These groups are designated and defined as follows: Class 100, exothermic base; Class 200, prepared nitrogen base; Class 300, endothermic base; Class 400, charcoal base; Class 500, exothermic-endothermic base; and Class 600, ammonia base. These are subclassified and numerically designated to indicate variations in the method by which they are prepared. The article also contains a table that lists significant furnace atmospheres and their typical applications.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005967
EISBN: 978-1-62708-166-5
Abstract
Of the various thermal processing methods for steel, heat treating has the greatest overall impact on control of residual stress and on dimensional control. This article provides an overview of the effects of material- and process-related parameters on the various types of failures observed during and after heat treating of quenched and tempered steels. It describes phase transformations of steels during heating, cooling of steel with and without metallurgical transformation, and the formation of high-temperature transformation products on the surface of a carburized part. The article illustrates the use of carbon restoration on decarburized spring steels. Different geometric models for carbide formation are shown schematically. The article also describes the different microstructural features such as grain size, microcracks, microsegregation, and banding.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005923
EISBN: 978-1-62708-166-5
Abstract
Quenchant agitation can be obtained by circulating quenchant in a quench tank through pumps and impellers. The selection of the agitation method depends on the tank design, type and volume of the quenchant, part design, and the severity of quench required. This article describes flow measurement methods, temperature control, materials handling, and filtration processes during the agitation process. The maintenance of quenching installations is also discussed.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005935
EISBN: 978-1-62708-166-5
Abstract
This article focuses on the heat removal stages involved in quenching, and on the experimental setup used for measuring temperature and detecting sound signals with the help of illustrations and curves. The quenching process generates acoustic signals, which are the consequences of the phase transformation of steel and of the boiling process at the interface during the cooling process. The sound-pressure signal is captured by the hydrophone through sound-emission measurements that occur during steel quenching in different quenching media. The analysis of the results offers an interesting approach to evaluation and, more importantly, to monitoring, controlling, and optimizing the entire quenching process.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005925
EISBN: 978-1-62708-166-5
Abstract
Temperature control in heat treating is of paramount importance in maintaining the quality and achieving the desired metallurgical results. This article provides a detailed account of the factors affecting temperature control in heat treating furnaces, with information on temperature control systems, including contact sensors, noncontact sensors, controllers, energy-flow regulators, measurement instruments, and set-point programmers. Common contact sensors include temperature scales, thermocouples, and resistance temperature detectors, whereas optical pyrometers and on-line radiation thermometers fall under the noncontact type. The article describes two types of instrumentation used in heat treating: field test instruments for temperature-uniformity surveys and system-accuracy tests; and controlling, monitoring, and recording instruments for digital instrumentation.
1